scispace - formally typeset
Open AccessJournal ArticleDOI

Full-wave simulations of electromagnetic cloaking structures.

Reads0
Chats0
TLDR
Full electromagnetic simulations of the cylindrical version of this cloaking structure are reported, using ideal and nonideal electromagnetic parameters that show that the low-reflection and power-flow bending properties of the electromagnetic cloaky structure are not especially sensitive to modest permittivity and permeability variations.
Abstract
Pendry et al. have reported electromagnetically anisotropic and inhomogeneous shells that, in theory, completely shield an interior structure of arbitrary size from electromagnetic fields without perturbing the external fields. Neither the coordinate transformation-based analytical formulation nor the supporting ray-tracing simulation indicate how material perturbations and full-wave effects might affect the solution. We report fully electromagnetic simulations of the cylindrical version of this cloaking structure using ideal and nonideal (but physically realizable) electromagnetic parameters that show that the low-reflection and power-flow bending properties of the electromagnetic cloaking structure are not especially sensitive to modest permittivity and permeability variations. The cloaking performance degrades smoothly with increasing loss, and effective low-reflection shielding can be achieved with a cylindrical shell composed of an eight- (homogeneous) layer approximation of the ideal continuous medium. An imperfect but simpler version of the cloaking material is derived and is shown to reproduce the ray bending of the ideal material in a manner that may be easier to experimentally realize.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Metamaterial Electromagnetic Cloak at Microwave Frequencies

TL;DR: This work describes here the first practical realization of a cloak of invisibility, constructed with the use of artificially structured metamaterials, designed for operation over a band of microwave frequencies.
Journal ArticleDOI

Optical cloaking with metamaterials

TL;DR: This work presents the design of a non-magnetic cloak operating at optical frequencies, and the principle and structure of the proposed cylindrical cloak are analysed and the general recipe for the implementation of such a device is provided.
Journal ArticleDOI

Hiding under the Carpet: A New Strategy for Cloaking

TL;DR: A new type of cloak is discussed: one that gives all cloaked objects the appearance of a flat conducting sheet that has the advantage that none of the parameters of the cloak is singular and can in fact be made isotropic.
Journal ArticleDOI

Transformation optics and metamaterials

TL;DR: The potential of transformation optics to create functionalities in which the optical properties can be designed almost at will is reviewed, which can be used to engineer various optical illusion effects, such as the invisibility cloak.
Journal ArticleDOI

One path to acoustic cloaking

TL;DR: In this paper, it was shown that the acoustic equations in a fluid are identical in form to the single polarization Maxwell equations via a variable exchange that also preserves boundary conditions, and the existence of transformation-type solutions for the 2D acoustic equations with anisotropic mass via time harmonic simulations of acoustic cloaking.
Related Papers (5)