scispace - formally typeset
Search or ask a question
Posted Content

Fully differentiable optimization protocols for non-equilibrium steady states

TL;DR: In this paper, the authors propose a method for inverse design of a quantum heat transfer device that maximizes the heat current and the rectification coefficient, based on automatic differentiation of the Liouvillian model.
Abstract: The time-evolution or equations of motions for many systems are usually described by a set of first-order ordinary differential equations, and for a variety of physical observables, the long-time limit or steady state solution is desired. In the case of open quantum systems, the time-evolution of the reduced density matrix is described by the Liouvillian. For inverse design or optimal control of such systems, the common approaches are based on brute-force search strategies. Here, we present a novel methodology, based on automatic differentiation, capable of differentiating the steady state solution with respect to any parameter of the Liouvillian. Our approach has a low memory cost, and is agnostic to the exact algorithm for computing the steady state. We illustrate the advantage of this method by inverse designing the parameters of a quantum heat transfer device that maximizes the heat current and the rectification coefficient. We also optimize the parameters of various Lindblad operators used in the simulation of energy transfer under natural incoherent light.
References
More filters
Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Journal ArticleDOI
TL;DR: In this paper, the notion of a quantum dynamical semigroup is defined using the concept of a completely positive map and an explicit form of a bounded generator of such a semigroup onB(ℋ) is derived.
Abstract: The notion of a quantum dynamical semigroup is defined using the concept of a completely positive map. An explicit form of a bounded generator of such a semigroup onB(ℋ) is derived. This is a quantum analogue of the Levy-Khinchin formula. As a result the general form of a large class of Markovian quantum-mechanical master equations is obtained.

6,381 citations

Book
29 Aug 2002
TL;DR: Probability in classical and quantum physics has been studied in this article, where classical probability theory and stochastic processes have been applied to quantum optical systems and non-Markovian dynamics in physical systems.
Abstract: PREFACE ACKNOWLEDGEMENTS PART 1: PROBABILITY IN CLASSICAL AND QUANTUM MECHANICS 1. Classical probability theory and stochastic processes 2. Quantum Probability PART 2: DENSITY MATRIX THEORY 3. Quantum Master Equations 4. Decoherence PART 3: STOCHASTIC PROCESSES IN HILBERT SPACE 5. Probability distributions on Hilbert space 6. Stochastic dynamics in Hilbert space 7. The stochastic simulation method 8. Applications to quantum optical systems PART 4: NON-MARKOVIAN QUANTUM PROCESSES 9. Projection operator techniques 10. Non-Markovian dynamics in physical systems PART 5: RELATIVISTIC QUANTUM PROCESSES 11. Measurements in relativistic quantum mechanics 12. Open quantum electrodynamics

6,325 citations

Book ChapterDOI
01 Jan 1965

1,219 citations

Proceedings Article
03 Dec 2018
TL;DR: In this paper, the authors introduce a new family of deep neural network models called continuous normalizing flows, which parameterize the derivative of the hidden state using a neural network, and the output of the network is computed using a black-box differential equation solver.
Abstract: We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a black-box differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.

1,082 citations