scispace - formally typeset
Search or ask a question
Book

Functional Analysis, Sobolev Spaces and Partial Differential Equations

07 Sep 2011-
TL;DR: In this article, the theory of conjugate convex functions is introduced, and the Hahn-Banach Theorem and the closed graph theorem are discussed, as well as the variations of boundary value problems in one dimension.
Abstract: Preface.- 1. The Hahn-Banach Theorems. Introduction to the Theory of Conjugate Convex Functions.- 2. The Uniform Boundedness Principle and the Closed Graph Theorem. Unbounded Operators. Adjoint. Characterization of Surjective Operators.- 3. Weak Topologies. Reflexive Spaces. Separable Spaces. Uniform Convexity.- 4. L^p Spaces.- 5. Hilbert Spaces.- 6. Compact Operators. Spectral Decomposition of Self-Adjoint Compact Operators.- 7. The Hille-Yosida Theorem.- 8. Sobolev Spaces and the Variational Formulation of Boundary Value Problems in One Dimension.- 9. Sobolev Spaces and the Variational Formulation of Elliptic Boundary Value Problems in N Dimensions.- 10. Evolution Problems: The Heat Equation and the Wave Equation.- 11. Some Complements.- Problems.- Solutions of Some Exercises and Problems.- Bibliography.- Index.
Citations
More filters
Book
04 Oct 2007
TL;DR: In this article, the authors propose a model for solving the model elliptic problems and model parabolic problems. But their model is based on Equations with Gradient Terms (EGS).
Abstract: Preliminaries.- Model Elliptic Problems.- Model Parabolic Problems.- Systems.- Equations with Gradient Terms.- Nonlocal Problems.

935 citations

Book ChapterDOI
01 Jan 2014
TL;DR: In this paper, Dzherbashian [Dzh60] defined a function with positive α 1 > 0, α 2 > 0 and real α 1, β 2, β 3, β 4, β 5, β 6, β 7, β 8, β 9, β 10, β 11, β 12, β 13, β 14, β 15, β 16, β 17, β 18, β 20, β 21, β 22, β 24
Abstract: Consider the function defined for \(\alpha _{1},\ \alpha _{2} \in \mathbb{R}\) (α 1 2 +α 2 2 ≠ 0) and \(\beta _{1},\beta _{2} \in \mathbb{C}\) by the series $$\displaystyle{ E_{\alpha _{1},\beta _{1};\alpha _{2},\beta _{2}}(z) \equiv \sum _{k=0}^{\infty } \frac{z^{k}} {\varGamma (\alpha _{1}k +\beta _{1})\varGamma (\alpha _{2}k +\beta _{2})}\ \ (z \in \mathbb{C}). }$$ (6.1.1) Such a function with positive α 1 > 0, α 2 > 0 and real \(\beta _{1},\beta _{2} \in \mathbb{R}\) was introduced by Dzherbashian [Dzh60].

919 citations

Journal ArticleDOI
TL;DR: In this article, the existence of multiple solutions for the nonhomogeneous fractional p-Laplacian equations of Schrodinger-Kirchhoff type was investigated, and multiplicity results were obtained by using the Ekeland variational principle and the Mountain Pass theorem.
Abstract: In this paper we investigate the existence of multiple solutions for the nonhomogeneous fractional p-Laplacian equations of Schrodinger–Kirchhoff type $$\begin{aligned} M\left( \iint _{R^{2N}}\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}dxdy\right) (-\varDelta )^s_pu+V(x)|u|^{p-2}u=f(x,u)+g(x) \end{aligned}$$ in $${\mathbb {R}}^N$$ , where $$(-\varDelta )^s_p$$ is the fractional p-Laplacian operator, with $$0

317 citations

References
More filters
Book
31 Dec 1969
TL;DR: In this article, the authors considered a hyperbolic parabolic singular perturbation problem for a quasilinear equation of kirchhoff type and obtained parameter dependent time decay estimates of the difference between the solutions of the solution of a quasi-linear parabolic equation and the corresponding linear parabolic equations.
Abstract: linear and quasi linear equations of parabolic type by o a ladyzhenskaia 1968 american mathematical society edition in english, note citations are based on reference standards however formatting rules can vary widely between applications and fields of interest or study the specific requirements or preferences of your reviewing publisher classroom teacher institution or organization should be applied, we consider a hyperbolicparabolic singular perturbation problem for a quasilinear equation of kirchhoff type and obtain parameter dependent time decay estimates of the difference between the solutions of a quasilinear dissipative hyperbolic equation of kirchhoff type and the corresponding quasilinear parabolic equation, pris 1899 kr hftad 1968 tillflligt slut bevaka linear and quasi linear equations of parabolic type s fr du ett mejl nr boken gr att kpa igen, then u x t solves the following system of quasilinear parabolic pde where y is the infinitesimal operator generated by the diffusion process y a particular case is that of linear one dimensional backward equation where f does not contain q in this case the corresponding system of equation becomes a linear parabolic pde, we consider linear parabolic equations of second order in a sobolev space setting we obtain existence and uniqueness results for such equations on a closed two dimensional manifold with minimal assumptions about the regularity of the coefficients of the elliptic operator, linear equations of the second order of parabolic type a m il in a s kalashnikov and o a oleinik the solvability of mixed problems for hyperbolic and parabolic equations v a il in quasi linear elliptic equations and variational problems with many independent variableso a ladyzhenskaya and n n ural tseva, the first boundary value problem for a linear second order parabolic equation is studied under the assumption that the inhomogeneous term is continuous in space and time and hlder continuous only with respect to the space variables linear and quasilinear equations of parabolic type transl math monographs 23 providence amer math, collapse in finite time is established for part of the solutions of certain classes of quasilinear equations of parabolic and hyperbolic types the linear part of which has general form certain hyperbolic equations having l m pairs belong to these classes, find helpful customer reviews and review ratings for linear and quasi linear equations of parabolic type at amazon com read honest and unbiased product

7,118 citations

Book
01 Jan 1972
TL;DR: In this paper, the authors consider the problem of finding solutions to elliptic boundary value problems in Spaces of Analytic Functions and of Class Mk Generalizations in the case of distributions and Ultra-Distributions.
Abstract: 7 Scalar and Vector Ultra-Distributions.- 1. Scalar-Valued Functions of Class Mk.- 1.1 The Sequences {Mk}.- 1.2 The Space $${D_{{M_k}}}\left( H \right)$$.- 1.3 The Spaces $${D_{{M_k}}}\left( H \right)$$ and $${\varepsilon _{{M_k}}}\left( H \right)$$.- 2. Scalar-Valued Ultra-Distributions of Class Mk Generalizations.- 2.1 The Space $$D{'_{{M_k}}}\left( \Omega \right)$$.- 2.2 Non-Symmetric Spaces of Class Mk.- 2.3 Scalar Ultra-Distributions of Beurling-Type.- 3. Spaces of Analytic Functions and of Analytic Functionals.- 3.1 The Spaces H(H) and H'(H).- 3.2 The Spaces H(?) and H(?).- 4. Vector-Valued Functions of Class Mk.- 4.1 The Space $${D_{{M_k}}}\left( {\phi F} \right)$$.- 4.2 The Spaces $${D_{{M_k}}}\left( {H,F} \right)$$ and $${E_{{M_k}}}\left( {\phi F} \right)$$.- 4.3 The Spaces $${D_{ \pm ,{M_k}}}\left( {\phi F} \right)$$.- 4.4 Remarks on the Topological Properties of the Spaces $${D_{{M_k}}}\left( {\phi F} \right),{E_{{M_k}}}\left( {\phi F} \right),{D_{ \pm ,{M_k}}}\left( {\phi F} \right)$$.- 5. Vector-Valued Ultra-Distributions of Class Mk Generalizations.- 5.1 Recapitulation on Vector-Valued Distributions.- 5.2 The Space $$D{'_{{M_k}}}\left( {\phi F} \right)$$.- 5.3 The Space $$D{'_{ \pm ,{M_k}}}\left( {\phi F} \right)$$.- 5.4 Vector-Valued Ultra-Distributions of Beurling-Type.- 5.5 The Particular Case: F = Banach Space.- 6. Comments.- 8 Elliptic Boundary Value Problems in Spaces of Distributions and Ultra-Distributions.- 1. Regularity of Solutions of Elliptic Boundary Value Problems in Spaces of Analytic Functions and of Class Mk Statement of the Problems and Results.- 1.1 Recapitulation on Elliptic Boundary Value Problems.- 1.2 Statement of the Mk-Regularity Results.- 1.3 Reduction of the Problem to the Case of the Half-Ball.- 2. The Theorem on "Elliptic Iterates": Proof.- 2.1 Some Lemmas.- 2.2 The Preliminary Estimate.- 2.3 Bounds for the Tangential Derivatives.- 2.4 Bounds for the Normal Derivatives.- 2.5 Proof of Theorem 1.3.- 2.6 Complements and Remarks.- 3. Application of Transposition Existence of Solutions in the Space D'(?) of Distributions.- 3.1 Generalities.- 3.2 Choice of the Form L the Space ?(?) and its Dual.- 3.3 Final Choice of the Form L the Space Y.- 3.4 Density Theorem.- 3.5 Trace Theorem and Green's Formula in Y.- 3.6 The Existence of Solutions in the Space Y.- 3.7 Continuity of Traces on Surfaces Neighbouring ?.- 4. Existence of Solutions in the Space $$D{'_{{M_k}}}\left( \Omega \right)$$ of Ultra-Distributions.- 4.1 Generalities.- 4.2 The Space $${\Xi _{{M_k}}}\left( \Omega \right)$$ and its Dual.- 4.3 The Space $${Y_{{M_k}}}$$ and the Existence of Solutions in $${Y_{{M_k}}}$$.- 4.4 Application to the Regularity in the Interior of Ultra-Distribution Solutions of the Equation Au = f.- 5. Comments.- 6. Problems.- 9 Evolution Equations in Spaces of Distributions and Ultra-Distributions.- 1. Regularity Results. Equations of the First Order in t.- 1.1 Orientation and Notation.- 1.2 Regularity in the Spaces D+.- 1.3 Regularity in the Spaces $${D_{ + ,{M_k}}}$$.- 1.4 Regularity in Beurling Spaces.- 1.5 First Applications.- 2. Equations of the Second Order in t.- 2.1 Statement of the Main Results.- 2.2 Proof of Theorem 2.1.- 2.3 Proof of Theorem 2.2.- 3. Singular Equations of the Second Order in t.- 3.1 Statement of the Main Results.- 3.2 Proof of Theorem 3.1.- 4. Schroedinger-Type Equations.- 4.1 Statement of the Main Results.- 4.2 Proof of Theorem 4.1.- 4.3 Proof of Theorem 4.2.- 5. Stability Results in Mk-Classes.- 5.1 Parabolic Regularization.- 5.2 Approximation by Systems of Cauchy-Kowaleska Type (I).- 5.3 Approximation by Systems of Cauchy-Kowaleska Type (II).- 6. Transposition.- 6.1 Orientation.- 6.2 The Parabolic Case.- 6.3 The Second Order in t Case and the Schroedinger Case.- 7. Semi-Groups.- 7.1 Orientation.- 7.2 The Space of Vectors of Class Mk.- 7.3 The Semi-Group G in the Spaces D(A? Mk). Applications.- 7.4 The Transposed Settings. Applications.- 7.5 Another Mk-Regularity Result.- 8. Mk -Classes and Laplace Transformation.- 8.1 Orientation-Hypotheses.- 8.2 Mk -Regularity Result.- 8.3 Transposition.- 9. General Operator Equations.- 9.1 General Results.- 9.2 Application. Periodic Problems.- 9.3 Transposition.- 10. The Case of a Finite Interval ]0, T[.- 10.1 Orientation. General Problems.- 10.2 Space Described by v(0) as v Describes X.- 10.3 The Space $${\Xi _{{M_k}}}$$.- 10.4 Choice of L.- 10.5 The Space Y and Trace Theorems.- 10.6 Non-Homogeneous Problems.- 11. Distribution and Ultra-Distribution Semi-Groups.- 11.1 Distribution Semi-Groups.- 11.2 Ultra-Distribution Semi-Groups.- 12. A General Local Existence Result.- 12.1 Statement of the Result.- 12.2 Examples.- 13. Comments.- 14. Problems.- 10 Parabolic Boundary Value Problems in Spaces of Ultra-Distributions.- 1. Regularity in the Interior of Solutions of Parabolic Equations.- 1.1 The Hypoellipticity of Parabolic Equations.- 1.2 The Regularity in the Interior in Gevrey Spaces.- 2. The Regularity at the Boundary of Solutions of Parabolic Boundary Value Problems.- 2.1 The Regularity in the Space $$D\left( {\bar Q} \right)$$.- 2.2 The Regularity in Gevrey Spaces.- 3. Application of Transposition: The Finite Cylinder Case.- 3.1 The Existence of Solutions in the Space D'(Q): Generalities, the Spaces X and Y.- 3.2 Space Described by ?v as v Describes X.- 3.3 Trace and Existence Theorems in the Space Y.- 3.4 The Existence of Solutions in the Spaces D's,r(Q) of Gevrey Ultra-Distributions, with r > 1, s ? 2m.- 4. Application of Transposition: The Infinite Cylinder Case.- 4.1 The Existence of Solutions in the Space D' (R D'(?)): The Space X_.- 4.2 The Existence of Solutions in the Space D'+ (R D'(?)): The Space Y+ and the Trace and Existence Theorems.- 4.3 The Existence of Solutions in the Spaces D'+,s(R D'r(?)), with r > 1, s ? 2m.- 4.4 Remarks on the Existence of Solutions and the Trace Theorems in other Spaces of Ultra-Distributions.- 5. Comments.- 6. Problems.- 11 Evolution Equations of the Second Order in t and of Schroedinger Type.- 1. Equations of the Second Order in t Regularity of the Solutions of Boundary Value Problems.- 1.1 The Regularity in the Space $$D\left( {\bar Q} \right)$$.- 1.2 The Regularity in Gevrey Spaces.- 2. Equations of the Second Order in t Application of Transposition and Existence of Solutions in Spaces of Distributions.- 2.1 Generalities.- 2.2 The Space $${D_{ - ,\gamma }}\left( {\left[ {0,T} \right] {D_\gamma }\left( {\bar \Omega } \right)} \right)$$ and its Dual.- 2.3 The Spaces X and Y.- 2.4 Study of the Operator ?.- 2.5 Trace and Existence Theorems in the Space Y.- 2.6 Complements on the Trace Theorems.- 2.7 The Infinite Cylinder Case.- 3. Equations of the Second Order in t Application of Transposition and Existence of Solutions in Spaces of Ultra-Distributions.- 3.1 The Difficulties in the Finite Cylinder Case.- 3.2 The Infinite Cylinder Case for m > 1.- 4. Schroedinger Equations Complements for Parabolic Equations.- 4.1 Regularity Results for the Schroedinger Equation.- 4.2 The Non-Homogeneous Boundary Value Problems for the Schroedinger Equation.- 4.3 Remarks on Parabolic Equations.- 5. Comments.- 6. Problems.- Appendix. Calculus of Variations in Gevrey-Type Spaces.

6,072 citations

Book
01 Nov 1971
TL;DR: In this paper, the authors present a unified treatment of basic topics that arise in Fourier analysis, and illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations.
Abstract: The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces.

5,579 citations

Book
01 Jan 1983
TL;DR: In this article, the authors measure smoothness using Atoms and Pointwise Multipliers, Wavelets, Spaces on Lipschitz Domains, Wavelet and Sampling Numbers.
Abstract: How to Measure Smoothness.- Atoms and Pointwise Multipliers.- Wavelets.- Spaces on Lipschitz Domains, Wavelets and Sampling Numbers.- Anisotropic Function Spaces.- Weighted Function Spaces.- Fractal Analysis: Measures, Characteristics, Operators.- Function Spaces on Quasi-metric Spaces.- Function Spaces on Sets.

4,099 citations