scispace - formally typeset
Search or ask a question

Functional architecture of macaque monkey visual cortex

TL;DR: By four independent anatomical methods it has been shown that these columns have an ocular dominance column all cells respond preferentially to the same eye, in that cells with common physiological properties are grouped together in vertically organized systems of columns.
Abstract: Of the many possible functions of the macaque monkey primary visual cortex (striate cortex, area 17) two are now fairly well understood. First, the incoming information from the lateral geniculate bodies is rearranged so that most cells in the striate cortex respond to specifically oriented line segments, and, second, information originating from the two eyes converges upon single cells. The rearrangement and convergence do not take place immediately, however: in layer IV c, where the bulk of the afferents terminate, virtually all cells have fields with circular symmetry and are strictly monocular, driven from the left eye or from the right, but not both; at subsequent stages, in layers above and below IV c, most cells show orientation specificity, and about half are binocular. In a binocular cell the receptive fields in the two eyes are on corresponding regions in the two retinas and are identical in structure, but one eye is usually more effective than the other in influencing the cell; all shades of ocular dominance are seen. These two functions are strongly reflected in the architecture of the cortex, in that cells with common physiological properties are grouped together in vertically organized systems of columns. In an ocular dominance column all cells respond preferentially to the same eye. By four independent anatomical methods it has been shown that these columns have the
Citations
More filters
Journal ArticleDOI
TL;DR: A neural network model for a mechanism of visual pattern recognition that is self-organized by “learning without a teacher”, and acquires an ability to recognize stimulus patterns based on the geometrical similarity of their shapes without affected by their positions.
Abstract: A neural network model for a mechanism of visual pattern recognition is proposed in this paper. The network is self-organized by “learning without a teacher”, and acquires an ability to recognize stimulus patterns based on the geometrical similarity (Gestalt) of their shapes without affected by their positions. This network is given a nickname “neocognitron”. After completion of self-organization, the network has a structure similar to the hierarchy model of the visual nervous system proposed by Hubel and Wiesel. The network consits of an input layer (photoreceptor array) followed by a cascade connection of a number of modular structures, each of which is composed of two layers of cells connected in a cascade. The first layer of each module consists of “S-cells”, which show characteristics similar to simple cells or lower order hypercomplex cells, and the second layer consists of “C-cells” similar to complex cells or higher order hypercomplex cells. The afferent synapses to each S-cell have plasticity and are modifiable. The network has an ability of unsupervised learning: We do not need any “teacher” during the process of self-organization, and it is only needed to present a set of stimulus patterns repeatedly to the input layer of the network. The network has been simulated on a digital computer. After repetitive presentation of a set of stimulus patterns, each stimulus pattern has become to elicit an output only from one of the C-cell of the last layer, and conversely, this C-cell has become selectively responsive only to that stimulus pattern. That is, none of the C-cells of the last layer responds to more than one stimulus pattern. The response of the C-cells of the last layer is not affected by the pattern's position at all. Neither is it affected by a small change in shape nor in size of the stimulus pattern.

4,713 citations

Journal ArticleDOI
TL;DR: The results of a series of search experiments are interpreted as evidence that focused attention to single items or to groups is required to reduce background activity when the Weber fraction distinguishing the pooled feature activity with displayscontaining a target and with displays containing only distractors is too small to allow reliable discrimination.
Abstract: In this article we review some new evidence relating to early visual processing and propose an explanatory framework. A series of search experiments tested detection of targets distinguished from the distractors by differences on a single dimension. Our aim was to use the pattern of search latencies to infer which features are coded automatically in early vision. For each of 12 different dimensions, one or more pairs of contrasting stimuli were tested. Each member of a pair played the role of target in one condition and the role of distractor in the other condition. Many pairs gave rise to a marked asymmetry in search latencies, such that one stimulus in the pair was detected either through parallel processing or with small increases in latency as display size increased, whereas the other gave search functions that increased much more steeply. Targets denned by larger values on the quantitative dimensions of length, number, and contrast, by line curvature, by misaligned orientation, and by values that deviated from a standard or prototypical color or shape were detected easily, whereas targets defined by smaller values on the quantitative dimensions, by straightness, by frame-aligned orientation, and by prototypical colors or shapes required slow and apparently serial search. These values appear to be coded by default, as the absence of the contrasting values. We found no feature of line arrangements that allowed automatic, preattentive detection; nor did connectedness or containment—the two examples of topological features that we tested. We interpret the results as evidence that focused attention to single items or to groups is required to reduce background activity when the Weber fraction distinguishing the pooled feature activity with displays containing a target and with displays containing only distractors is too small to allow reliable discrimination.

2,240 citations

Journal ArticleDOI
TL;DR: By this account, neurotrophins may participate in activity-dependent synaptic plasticity, linking synaptic activity with long-term functional and structural modification of synaptic connections.
Abstract: The role of neurotrophins as regulatory factors that mediate the differentiation and survival of neurons has been well described. More recent evidence indicates that neurotrophins may also act as synaptic modulators. Here, I review the evidence that synaptic activity regulates the synthesis, secretion and action of neurotrophins, which can in turn induce immediate changes in synaptic efficacy and morphology. By this account, neurotrophins may participate in activity-dependent synaptic plasticity, linking synaptic activity with long-term functional and structural modification of synaptic connections.

1,783 citations

Journal ArticleDOI
TL;DR: The conditions under which a set of continuous 2D Gabor wavelets will provide a complete representation of any image are derived, and self-similar wavelet parametrization is found which allow stable reconstruction by summation as though the wavelets formed an orthonormal basis.
Abstract: This paper extends to two dimensions the frame criterion developed by Daubechies for one-dimensional wavelets, and it computes the frame bounds for the particular case of 2D Gabor wavelets. Completeness criteria for 2D Gabor image representations are important because of their increasing role in many computer vision applications and also in modeling biological vision, since recent neurophysiological evidence from the visual cortex of mammalian brains suggests that the filter response profiles of the main class of linearly-responding cortical neurons (called simple cells) are best modeled as a family of self-similar 2D Gabor wavelets. We therefore derive the conditions under which a set of continuous 2D Gabor wavelets will provide a complete representation of any image, and we also find self-similar wavelet parametrization which allow stable reconstruction by summation as though the wavelets formed an orthonormal basis. Approximating a "tight frame" generates redundancy which allows low-resolution neural responses to represent high-resolution images.

1,727 citations


Cites background from "Functional architecture of macaque ..."

  • ...—————————— ✦ —————————— 1 INTRODUCTION INCE Hubel and Wiesel’s [16] discovery of the crystalline organization of the primary visual cortex in mammalian brains some thirty years ago, an enormous amount of experimental and theoretical research has greatly advanced our understanding of this area and the response properties of its cells....

    [...]

  • ...—————————— ✦ —————————— 1 INTRODUCTION INCE Hubel and Wiesel’s [16] discovery of the crystalline organization of the primary visual cortex in mammalian brains some thirty years ago, an enormous amount of experimental and theoretical research has greatly advanced our understanding of this area and the response properties of its cells....

    [...]

  • ...Hubel and Wiesel’s [16] data suggested that at least 16 to 20 orientations are being sampled per hypercolumn, and the receptive fields of the cortical cells in one hypercolumn overlap half of the receptive fields of the cells in the adjacent hypercolumns....

    [...]

Journal ArticleDOI
TL;DR: The results suggest that a system involved in the processing of color information, especially color-spatial interactions, runs parallel to and separate from the orientation-specific system.
Abstract: Staining for the mitochondrial enzyme cytochrome oxidase reveals an array of dense regions (blobs) in the primate primary visual cortex. They are most obvious in the upper layers, 2 and 3, but can also be seen in layers 4B, 5, and 6, in register with the blobs in layers 2 and 3. We compared cells inside and outside blobs in macaque and squirrel monkeys, looking at their physiological responses and anatomical connections. Cells within blobs did not show orientation selectivity, whereas cells between blobs were highly orientation selective. Receptive fields of blob cells had circular symmetry and were of three main types, Broad-Band Center-Surround, Red-Green Double-Opponent, and Yellow-Blue Double-Opponent. Double-Opponent cells responded poorly or not at all to white light in any form, or to diffuse light at any wavelength. In contrast to blob cells, none of the cells recorded in layer 4C beta were Double-Opponent: like the majority of cells in the parvocellular geniculate layers, they were either Broad-Band or Color-Opponent Center-Surround, e.g., red-on-center green-off-surround. To our surprise cells in layer 4C alpha were orientation selective. In tangential penetrations throughout layers 2 and 3, optium orientation, when plotted against electrode position, formed long, regular, usually linear sequences, which were interrupted but not perturbed by the blobs. Staining area 18 for cytochrome oxidase reveals a series of alternating wide and narrow dense stripes, separated by paler interstripes. After small injections of horseradish peroxidase into area 18, we saw a precise set of connections from the blobs in area 17 to thin stripes in area 18, and from the interblob regions in area 17 to interstripes in area 18. Specific reciprocal connections also ran from thin stripes to blobs and from interstripes to interblobs. We have not yet determined the area 17 connections to thick stripes in area 18. In addition, within area 18 there are stripe-to-stripe and interstripe-to-interstripe intrinsic connections. These results suggest that a system involved in the processing of color information, especially color-spatial interactions, runs parallel to and separate from the orientation-specific system. Color, encoded in three coordinates by the major blob cell types, red-green, yellow-blue, and black-white, can be transformed into the three coordinates, red, green, and blue, of the Retinex algorithm of Land.

1,546 citations


Cites background or methods from "Functional architecture of macaque ..."

  • ...…columns and orientation columns were first inferred from physiological experiments, and although classical stains gave no hint of these subdivisions, more refined anatomical methods have made it possible to see both types of columns directly (Hubel et al., 1974a, 197713; LeVay et al., 1975)....

    [...]

  • ...For both, the groupings take the form of vertically arranged parallel slabs spanning the full cortical thickness (Hubel and Wiesel, 1968, 1974a, 1977; LeVay et al., 1975)....

    [...]

  • ...With the greater precision of the cytochrome oxidase stain in delineating the layer 4B/4C border, it now seems clear that the upper of these densely and periodically labeled regions was layer 4Ca, not layer 4B (see Hubel et al., 1977b, Fig....

    [...]

  • ...It had seemed strange that in previous deoxyglucose studies (Hubel et al., 1977b), after stripe stimulation the densest patterns seemed to be in layers 4B and 6, since layer 4B is only sparsely populated with cells whereas layer 6 is one of the most densely cell-packed layers....

    [...]

  • ...In the macaque these layers are gossamer (Hubel et al., 1977a) and perhaps less likely to be the sole source of a system as prominent as the one we are about to describe....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This method is used to examine receptive fields of a more complex type and to make additional observations on binocular interaction and this approach is necessary in order to understand the behaviour of individual cells, but it fails to deal with the problem of the relationship of one cell to its neighbours.
Abstract: What chiefly distinguishes cerebral cortex from other parts of the central nervous system is the great diversity of its cell types and interconnexions. It would be astonishing if such a structure did not profoundly modify the response patterns of fibres coming into it. In the cat's visual cortex, the receptive field arrangements of single cells suggest that there is indeed a degree of complexity far exceeding anything yet seen at lower levels in the visual system. In a previous paper we described receptive fields of single cortical cells, observing responses to spots of light shone on one or both retinas (Hubel & Wiesel, 1959). In the present work this method is used to examine receptive fields of a more complex type (Part I) and to make additional observations on binocular interaction (Part II). This approach is necessary in order to understand the behaviour of individual cells, but it fails to deal with the problem of the relationship of one cell to its neighbours. In the past, the technique of recording evoked slow waves has been used with great success in studies of functional anatomy. It was employed by Talbot & Marshall (1941) and by Thompson, Woolsey & Talbot (1950) for mapping out the visual cortex in the rabbit, cat, and monkey. Daniel & Whitteiidge (1959) have recently extended this work in the primate. Most of our present knowledge of retinotopic projections, binocular overlap, and the second visual area is based on these investigations. Yet the method of evoked potentials is valuable mainly for detecting behaviour common to large populations of neighbouring cells; it cannot differentiate functionally between areas of cortex smaller than about 1 mm2. To overcome this difficulty a method has in recent years been developed for studying cells separately or in small groups during long micro-electrode penetrations through nervous tissue. Responses are correlated with cell location by reconstructing the electrode tracks from histological material. These techniques have been applied to

12,923 citations

Journal ArticleDOI
TL;DR: The striate cortex was studied in lightly anaesthetized macaque and spider monkeys by recording extracellularly from single units and stimulating the retinas with spots or patterns of light, with response properties very similar to those previously described in the cat.
Abstract: 1. The striate cortex was studied in lightly anaesthetized macaque and spider monkeys by recording extracellularly from single units and stimulating the retinas with spots or patterns of light. Most cells can be categorized as simple, complex, or hypercomplex, with response properties very similar to those previously described in the cat. On the average, however, receptive fields are smaller, and there is a greater sensitivity to changes in stimulus orientation. A small proportion of the cells are colour coded. 2. Evidence is presented for at least two independent systems of columns extending vertically from surface to white matter. Columns of the first type contain cells with common receptive-field orientations. They are similar to the orientation columns described in the cat, but are probably smaller in cross-sectional area. In the second system cells are aggregated into columns according to eye preference. The ocular dominance columns are larger than the orientation columns, and the two sets of boundaries seem to be independent. 3. There is a tendency for cells to be grouped according to symmetry of responses to movement; in some regions the cells respond equally well to the two opposite directions of movement of a line, but other regions contain a mixture of cells favouring one direction and cells favouring the other. 4. A horizontal organization corresponding to the cortical layering can also be discerned. The upper layers (II and the upper two-thirds of III) contain complex and hypercomplex cells, but simple cells are virtually absent. The cells are mostly binocularly driven. Simple cells are found deep in layer III, and in IV A and IV B. In layer IV B they form a large proportion of the population, whereas complex cells are rare. In layers IV A and IV B one finds units lacking orientation specificity; it is not clear whether these are cell bodies or axons of geniculate cells. In layer IV most cells are driven by one eye only; this layer consists of a mosaic with cells of some regions responding to one eye only, those of other regions responding to the other eye. Layers V and VI contain mostly complex and hypercomplex cells, binocularly driven. 5. The cortex is seen as a system organized vertically and horizontally in entirely different ways. In the vertical system (in which cells lying along a vertical line in the cortex have common features) stimulus dimensions such as retinal position, line orientation, ocular dominance, and perhaps directionality of movement, are mapped in sets of superimposed but independent mosaics. The horizontal system segregates cells in layers by hierarchical orders, the lowest orders (simple cells monocularly driven) located in and near layer IV, the higher orders in the upper and lower layers.

6,388 citations

Journal ArticleDOI
TL;DR: The present investigation, made in acute preparations, includes a study of receptive fields of cells in the cat's striate cortex, which resembled retinal ganglion-cell receptive fields, but the shape and arrangement of excitatory and inhibitory areas differed strikingly from the concentric pattern found in retinalganglion cells.
Abstract: In the central nervous system the visual pathway from retina to striate cortex provides an opportunity to observe and compare single unit responses at several distinct levels. Patterns of light stimuli most effective in influencing units at one level may no longer be the most effective at the next. From differences in responses at successive stages in the pathway one may hope to gain some understanding of the part each stage plays in visual perception. By shining small spots of light on the light-adapted cat retina Kuffler (1953) showed that ganglion cells have concentric receptive fields, with an 'on' centre and an 'off ' periphery, or vice versa. The 'on' and 'off' areas within a receptive field were found to be mutually antagonistic, and a spot restricted to the centre of the field was more effective than one covering the whole receptive field (Barlow, FitzHugh & Kuffler, 1957). In the freely moving lightadapted cat it was found that the great majority of cortical cells studied gave little or no response to light stimuli covering most of the animal's visual field, whereas small spots shone in a restricted retinal region often evoked brisk responses (Hubel, 1959). A moving spot of light often produced stronger responses than a stationary one, and sometimes a moving spot gave more activation for one direction than for the opposite. The present investigation, made in acute preparations, includes a study of receptive fields of cells in the cat's striate cortex. Receptive fields of the cells considered in this paper were divided into separate excitatory and inhibitory ('on' and 'off') areas. In this respect they resembled retinal ganglion-cell receptive fields. However, the shape and arrangement of excitatory and inhibitory areas differed strikingly from the concentric pattern found in retinal ganglion cells. An attempt was made to correlate responses to moving stimuli

4,405 citations

Journal ArticleDOI
TL;DR: To UNDERSTAND VISION in physiological terms represents a formidable problem for the biologist, and one approach is to stimulate the retina with patterns of light while recording from single cells or fibers at various points along the visual pathway.
Abstract: To UNDERSTAND VISION in physiological terms represents a formidable problem for the biologist. I t am0 unts to learning how the nervous system handles incoming messages so that form, color, movement, and depth can be perceived and interpreted. One approach, perhaps the most direct, is to stimulate the retina with patterns of light while recording from single cells or fibers at various points along the visual pa thway. For each cell the optimum stimulus can be determined, and one can note the charac teristics common to cells at the next. each level in the visual pathway, and compare a given level with

2,612 citations

Journal ArticleDOI
TL;DR: The Limulus preparation shows many features which are similar to other simple sense organs, for instance, stretch receptors, however, instead of photochemical events, stretch-deformation acts as the adequate stimulus on sensory terminals and is translated into a characteristic discharge pattern.
Abstract: THE DISCHARGES carried in the optic nerve fibers contain all the information which the central nervous system receives from the retina. A correct interpretation of discharge patterns therefore constitutes an important step in the analysis of visual events. Further, investigations of nervous activity arising in the eye reveal many aspects of the functional organization of the neural elements within the retina itself. Following studies of discharges in the optic nerve of the eel’s eye by Adrian and Matthews (2,3), Hartline and his colleagues described the discharge pattern in the eye of the Limulus in a series of important and lucid papers (for a summary see 20). In the Limulus the relationship between the stimulus to the primary receptor cell and the nerve discharges proved relatively simple, apparently because the connection between sense cell and nerve fiber was a direct one. Thus, when stimulation is confined to one receptor the discharge in a single Limulus nerve fiber will provide a good indication of excitatory events which take place as a result of photochemical processes. Discharges last for the duration of illumination and their frequency is a measure of stimulus strength. Lately, however, it was shown by Hartline et al. (22) that inhibitory interactions may be revealed when several receptors are excited. On the whole, the Limulus preparation shows many features which are similar to other simple sense organs, for instance, stretch receptors. In the latter, however, instead of photochemical events, stretch-deformation acts as the adequate stimulus on sensory terminals and is translated into a characteristic discharge pattern. The discharge from the cold-blooded vertebrate retina (mainly frogs) proved much more complex. Hartline found three main types when recording from single optic nerve fibers: (i) “on” discharges, similar to those in the Limulus, firing for the duration of the light stimulus, (ii) “off” discharges appearing when a light stimulus was withdrawn, and (iii) ‘con-off” discharges, a combination of the former two, with activity confined mainly to onset and cessation of illumination. The mammalian discharge patterns were studied in a number of species by Granit and his co-workers in the course of their extensive work on the physiology of the visual system (summaries in 13, 15). On the whole, they did not observe any fundamental differences between frog and mammalian discharge types (see later).

2,540 citations


"Functional architecture of macaque ..." refers background in this paper

  • ...We propose to give only a rough sketch of the subject: those who wish to read further may consult the original papers (Kuffier 1953; Rubel & Wiesel 1959, 1962, 1968)....

    [...]

  • ...Because of the concentric, mutually antagonistic centresurround receptive field arrangement (Kuffier 1953), a spot occupying exactly the centre of the receptive field is always more effective than one of larger size, and consequently more effective than diffuse light....

    [...]

  • ...We propose to give only a rough sketch of the subject: those who wish to read further may consult the original papers (Kuffier 1953; Rubel & Wiesel 1959, 1962, 1968). The position occupied by the striate cortex in the visual pathway is illustrated in figure 1, a diagram taken from Polyak (1957). The brain in this figure is seen from below....

    [...]