scispace - formally typeset
Open AccessJournal ArticleDOI

Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses.

Reads0
Chats0
TLDR
An approach to rapidly screen lineage B betacoronaviruses, such as SARS-CoV and the recently emerged SARS -CoV-2, for receptor usage and their ability to infect cell types from different species is developed.
Abstract
Over the past 20 years, several coronaviruses have crossed the species barrier into humans, causing outbreaks of severe, and often fatal, respiratory illness. Since SARS-CoV was first identified in animal markets, global viromics projects have discovered thousands of coronavirus sequences in diverse animals and geographic regions. Unfortunately, there are few tools available to functionally test these viruses for their ability to infect humans, which has severely hampered efforts to predict the next zoonotic viral outbreak. Here, we developed an approach to rapidly screen lineage B betacoronaviruses, such as SARS-CoV and the recent SARS-CoV-2, for receptor usage and their ability to infect cell types from different species. We show that host protease processing during viral entry is a significant barrier for several lineage B viruses and that bypassing this barrier allows several lineage B viruses to enter human cells through an unknown receptor. We also demonstrate how different lineage B viruses can recombine to gain entry into human cells, and confirm that human ACE2 is the receptor for the recently emerging SARS-CoV-2. This study describes the development of an approach to rapidly screen lineage B betacoronaviruses, such as SARS-CoV and the recently emerged SARS-CoV-2, for receptor usage and their ability to infect cell types from different species. Using it, they confirm human ACE2 as the receptor for SARs-CoV-2 and show that host protease processing during viral entry is a significant barrier for viral entry.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein.

TL;DR: It is demonstrating that cross-neutralizing antibodies targeting conserved S epitopes can be elicited upon vaccination, and it is shown that SARS-CoV-2 S uses ACE2 to enter cells and that the receptor-binding domains of Sars- coV- 2 S and SARS S bind with similar affinities to human ACE2, correlating with the efficient spread of SATS among humans.
Journal ArticleDOI

Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor.

TL;DR: High-resolution crystal structures of the receptor-binding domain of the spike protein of SARS-CoV-2 and SARS -CoV in complex with ACE2 provide insights into the binding mode of these coronaviruses and highlight essential ACE2-interacting residues.
Journal ArticleDOI

The proximal origin of SARS-CoV-2.

TL;DR: It is shown that SARS-CoV-2 is not a laboratory construct or a purposefully manipulated virus, and scenarios by which they could have arisen are discussed.
Journal ArticleDOI

The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status.

TL;DR: The latest research progress of the epidemiology, pathogenesis, and clinical characteristics of COVID-19 are summarized, and the current treatment and scientific advancements to combat the epidemic novel coronavirus are discussed.
Journal ArticleDOI

Structural basis of receptor recognition by SARS-CoV-2.

TL;DR: This study determines the crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 (engineered to facilitate crystallization) in complex with ACE2 and sheds light on the structural features that increase its binding affinity to ACE2.
References
More filters
Journal ArticleDOI

A pneumonia outbreak associated with a new coronavirus of probable bat origin

TL;DR: Identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China, and it is shown that this virus belongs to the species of SARSr-CoV, indicates that the virus is related to a bat coronav virus.
Journal ArticleDOI

Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus.

TL;DR: It is found that a soluble form of ACE2, but not of the related enzyme ACE1, blocked association of the S1 domain with Vero E6 cells, indicating that ACE2 is a functional receptor for SARS-CoV.
Journal ArticleDOI

Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus.

TL;DR: These analyses provide insights into the receptor usage, cell entry, host cell infectivity and animal origin of 2019-nCoV and may help epidemic surveillance and preventive measures against 2019- nCoV.
Journal ArticleDOI

Bats are natural reservoirs of SARS-like coronaviruses.

TL;DR: It is reported that species of bats are a natural host of coronaviruses closely related to those responsible for the SARS outbreak, and these viruses display greater genetic variation than SARS-CoV isolated from humans or from civets.
Journal ArticleDOI

Structure, Function, and Evolution of Coronavirus Spike Proteins.

TL;DR: This article reviews current knowledge about the structures and functions of coronavirus spike proteins, illustrating how the two S1 domains recognize different receptors and how the spike proteins are regulated to undergo conformational transitions.
Related Papers (5)