scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Functional Characterisation of the Autophagy ATG12~5/16 Complex in Dictyostelium discoideum.

TL;DR: The results confirm the essential function of the ATG12~5/16 complex in canonical autophagy, and furthermore are consistent with autophophagy-independent functions of the complex and its individual components.
Abstract: Macroautophagy, a highly conserved and complex intracellular degradative pathway, involves more than 20 core autophagy (ATG) proteins, among them the hexameric ATG12~5/16 complex, which is part of the essential ubiquitin-like conjugation systems in autophagy. Dictyostelium discoideum atg5 single, atg5/12 double, and atg5/12/16 triple gene knock-out mutant strains displayed similar defects in the conjugation of ATG8 to phosphatidylethanolamine, development, and cell viability upon nitrogen starvation. This implies that ATG5, 12 and 16 act as a functional unit in canonical autophagy. Macropinocytosis of TRITC dextran and phagocytosis of yeast were significantly decreased in ATG5¯ and ATG5¯/12¯ and even further in ATG5¯/12¯/16¯ cells. In contrast, plaque growth on Klebsiella aerogenes was about twice as fast for ATG5¯ and ATG5¯/12¯/16¯ cells in comparison to AX2, but strongly decreased for ATG5¯/12¯ cells. Along this line, phagocytic uptake of Escherichia coli was significantly reduced in ATG5¯/12¯ cells, while no difference in uptake, but a strong increase in membrane association of E. coli, was seen for ATG5¯ and ATG5¯/12¯/16¯ cells. Proteasomal activity was also disturbed in a complex fashion, consistent with an inhibitory activity of ATG16 in the absence of ATG5 and/or ATG12. Our results confirm the essential function of the ATG12~5/16 complex in canonical autophagy, and furthermore are consistent with autophagy-independent functions of the complex and its individual components. They also strongly support the placement of autophagy upstream of the ubiquitin-proteasome system (UPS), as a fully functional UPS depends on autophagy.
Citations
More filters
Journal ArticleDOI
15 Nov 2019-Science
TL;DR: The UPS and autophagy form an interconnected quality control network where decision-making is self-organized on the basis of biophysical parameters (binding affinities, local concentrations, and avidity) and compartmentalization (through membranes, liquid-liquid phase separation, or the formation of aggregates).
Abstract: To achieve homeostasis, cells evolved dynamic and self-regulating quality control processes to adapt to new environmental conditions and to prevent prolonged damage. We discuss the importance of two major quality control systems responsible for degradation of proteins and organelles in eukaryotic cells: the ubiquitin-proteasome system (UPS) and autophagy. The UPS and autophagy form an interconnected quality control network where decision-making is self-organized on the basis of biophysical parameters (binding affinities, local concentrations, and avidity) and compartmentalization (through membranes, liquid-liquid phase separation, or the formation of aggregates). We highlight cellular quality control factors that delineate their differential deployment toward macromolecular complexes, liquid-liquid phase-separated subcellular structures, or membrane-bound organelles. Finally, we emphasize the need for continuous promotion of quantitative and mechanistic research into the roles of the UPS and autophagy in human pathophysiology.

499 citations

Journal ArticleDOI
TL;DR: Recent findings related to ATG conjugation systems are summarized, focusing on current controversies regarding the genetic hierarchy of these systems, interpretation of conjugated-independent alternative macroautophagy, differences in roles between LC3s and gamma-aminobutyric acid receptor-associated proteins in autophagosome formation and cargo recognition, and evolution ofThese systems.

227 citations

01 Jan 2012
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

173 citations

Journal ArticleDOI
TL;DR: Various domains have been identified within ATG16L1 that mediate its functions in recognising single and double membranes and activating subsequent autophagy-related enzymatic activities required for the recruitment of lysosomes.
Abstract: Autophagy requires the formation of membrane vesicles, known as autophagosomes, that engulf cellular cargoes and subsequently recruit lysosomal hydrolases for the degradation of their contents. A number of autophagy-related proteins act to mediate the de novo biogenesis of autophagosomes and vesicular trafficking events that are required for autophagy. Of these proteins, ATG16L1 is a key player that has important functions at various stages of autophagy. Numerous recent studies have begun to unravel novel activities of ATG16L1, including interactions with proteins and lipids, and how these mediate its role during autophagy and autophagy-related processes. Various domains have been identified within ATG16L1 that mediate its functions in recognising single and double membranes and activating subsequent autophagy-related enzymatic activities required for the recruitment of lysosomes. These recent findings, as well as the historical discovery of ATG16L1, pathological relevance, unresolved questions and contradictory observations, will be discussed here.

33 citations


Cites background from "Functional Characterisation of the ..."

  • ...…Atg5 and Atg12 show increased defects in macropinocytosis of fluorescent dextran and phagocytosis of yeast cells when compared to those with Atg5 and Atg12 co-deletion alone, thereby suggesting additional non-autophagic and potentially redundant activities of these proteins (Karow et al., 2020)....

    [...]

  • ...Individual or combined deletions of Atg16, Atg5 and Atg12 in the social amoeba Dictyostelium discoideum lead to similar autophagy-related phenotypes to those observed with other Atg deletions, including developmental abnormalities and reduced survival during nitrogen starvation (Karow et al., 2020)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the knowledge of the interplay between autophagy and the early events of HIV-1 infection, and how auto-ophagy modulation could impair or benefit HIV infection and persistence.
Abstract: HIV/AIDS is still a global threat despite the notable efforts made by the scientific and health communities to understand viral infection, to design new drugs or to improve existing ones, as well as to develop advanced therapies and vaccine designs for functional cure and viral eradication. The identification and analysis of HIV-1 positive individuals that naturally control viral replication in the absence of antiretroviral treatment has provided clues about cellular processes that could interact with viral proteins and RNA and define subsequent viral replication and clinical progression. This is the case of autophagy, a degradative process that not only maintains cell homeostasis by recycling misfolded/old cellular elements to obtain nutrients, but is also relevant in the innate and adaptive immunity against viruses, such as HIV-1. Several studies suggest that early steps of HIV-1 infection, such as virus binding to CD4 or membrane fusion, allow the virus to modulate autophagy pathways preparing cells to be permissive for viral infection. Confirming this interplay, strategies based on autophagy modulation are able to inhibit early steps of HIV-1 infection. Moreover, autophagy dysregulation in late steps of the HIV-1 replication cycle may promote autophagic cell-death of CD4+ T cells or control of HIV-1 latency, likely contributing to disease progression and HIV persistence in infected individuals. In this scenario, understanding the molecular mechanisms underlying HIV/autophagy interplay may contribute to the development of new strategies to control HIV-1 replication. Therefore, the aim of this review is to summarize the knowledge of the interplay between autophagy and the early events of HIV-1 infection, and how autophagy modulation could impair or benefit HIV-1 infection and persistence, impacting viral pathogenesis, immune control of viral replication, and clinical progression of HIV-1 infected patients.

15 citations

References
More filters
Journal Article
TL;DR: Copyright (©) 1999–2012 R Foundation for Statistical Computing; permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and permission notice are preserved on all copies.
Abstract: Copyright (©) 1999–2012 R Foundation for Statistical Computing. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the R Core Team.

272,030 citations

Journal ArticleDOI
15 Aug 1970-Nature
TL;DR: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products.
Abstract: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products. Four major components of the head are cleaved during the process of assembly, apparently after the precursor proteins have assembled into some large intermediate structure.

232,912 citations

Journal Article
01 Jan 1970-Nature
TL;DR: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products as mentioned in this paper.
Abstract: Using an improved method of gel electrophoresis, many hitherto unknown proteins have been found in bacteriophage T4 and some of these have been identified with specific gene products. Four major components of the head are cleaved during the process of assembly, apparently after the precursor proteins have assembled into some large intermediate structure.

203,017 citations

Journal ArticleDOI
TL;DR: A method has been devised for the electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets that results in quantitative transfer of ribosomal proteins from gels containing urea.
Abstract: A method has been devised for the electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. The method results in quantitative transfer of ribosomal proteins from gels containing urea. For sodium dodecyl sulfate gels, the original band pattern was obtained with no loss of resolution, but the transfer was not quantitative. The method allows detection of proteins by autoradiography and is simpler than conventional procedures. The immobilized proteins were detectable by immunological procedures. All additional binding capacity on the nitrocellulose was blocked with excess protein; then a specific antibody was bound and, finally, a second antibody directed against the first antibody. The second antibody was either radioactively labeled or conjugated to fluorescein or to peroxidase. The specific protein was then detected by either autoradiography, under UV light, or by the peroxidase reaction product, respectively. In the latter case, as little as 100 pg of protein was clearly detectable. It is anticipated that the procedure will be applicable to analysis of a wide variety of proteins with specific reactions or ligands.

53,030 citations

Journal ArticleDOI
TL;DR: This work presents DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates, which enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.
Abstract: In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html .

47,038 citations


"Functional Characterisation of the ..." refers methods in this paper

  • ...RNAseq analysis was done as described by using the DESeq2 package [39,64]....

    [...]