scispace - formally typeset
Open accessJournal ArticleDOI: 10.1016/J.CELREP.2021.108789

Functional genetics of human gut commensal Bacteroides thetaiotaomicron reveals metabolic requirements for growth across environments

02 Mar 2021-Cell Reports (Cell Press)-Vol. 34, Iss: 9, pp 108789-108789
Abstract: Harnessing the microbiota for beneficial outcomes is limited by our poor understanding of the constituent bacteria, as the functions of most of their genes are unknown. Here, we measure the growth of a barcoded transposon mutant library of the gut commensal Bacteroides thetaiotaomicron on 48 carbon sources, in the presence of 56 stress-inducing compounds, and during mono-colonization of gnotobiotic mice. We identify 516 genes with a specific phenotype under only one or a few conditions, enabling informed predictions of gene function. For example, we identify a glycoside hydrolase important for growth on type I rhamnogalacturonan, a DUF4861 protein for glycosaminoglycan utilization, a 3-keto-glucoside hydrolase for disaccharide utilization, and a tripartite multidrug resistance system specifically for bile salt tolerance. Furthermore, we show that B. thetaiotaomicron uses alternative enzymes for synthesizing nitrogen-containing metabolic precursors based on ammonium availability and that these enzymes are used differentially in vivo in a diet-dependent manner.

... read more

Citations
  More

9 results found


Open accessJournal ArticleDOI: 10.1128/JB.00217-21
Abstract: Human gut microbiome composition is constantly changing, and diet is a major driver of these changes. Gut microbial species that persist in mammalian hosts for long periods of time must possess mechanisms for sensing and adapting to nutrient shifts to avoid being outcompeted. Global regulatory mechanisms mediated by RNA-binding proteins (RBPs) that govern responses to nutrient shifts have been characterized in Proteobacteria and Firmicutes but remain undiscovered in the Bacteroidetes. Here, we report the identification of RBPs that are broadly distributed across the Bacteroidetes, with many genomes encoding multiple copies. Genes encoding these RBPs are highly expressed in many Bacteroides species. A purified RBP, RbpB, from Bacteroides thetaiotaomicron binds to single-stranded RNA in vitro with an affinity similar to other characterized regulatory RBPs. B. thetaiotaomicron mutants lacking RBPs show dramatic shifts in expression of polysaccharide utilization and capsular polysaccharide loci, suggesting that these RBPs may act as global regulators of polysaccharide metabolism. A B. thetaiotaomicron ΔrbpB mutant shows a growth defect on dietary sugars belonging to the raffinose family of oligosaccharides (RFOs). The ΔrbpB mutant had reduced expression of BT1871, encoding a predicted RFO-degrading melibiase, compared to the wild-type strain. Mutation of BT1871 confirmed that the enzyme it encodes is essential for growth on melibiose and promotes growth on the RFOs raffinose and stachyose. Our data reveal that RbpB is required for optimal expression of BT1871 and other polysaccharide-related genes, suggesting that we have identified an important new family of global regulatory proteins in the Bacteroidetes. IMPORTANCE The human colon houses hundreds of bacterial species, including many belonging to the genus Bacteroides, that aid in breaking down our food to keep us healthy. Bacteroides have many genes responsible for breaking down different dietary carbohydrates, and complex regulatory mechanisms ensure that specific genes are only expressed when the right carbohydrates are available. In this study, we discovered that Bacteroides use a family of RNA-binding proteins as global regulators to coordinate expression of carbohydrate utilization genes. The ability to turn different carbohydrate utilization genes on and off in response to changing nutrient conditions is critical for Bacteroides to live successfully in the gut, and thus the new regulators we have identified may be important for life in the host.

... read more

2 Citations


Open accessJournal ArticleDOI: 10.1038/S41596-021-00531-3
21 May 2021-Nature Protocols
Abstract: Commensal bacteria from the human intestinal microbiota play important roles in health and disease. Research into the mechanisms by which these bacteria exert their effects is hampered by the complexity of the microbiota, the strict growth requirements of the individual species and a lack of genetic tools and resources. The assembly of ordered transposon insertion libraries, in which nearly all nonessential genes have been disrupted and the strains stored as independent monocultures, would be a transformative resource for research into many microbiota members. However, assembly of these libraries must be fast and inexpensive in order to empower investigation of the large number of species that typically compose gut communities. The methods used to generate ordered libraries must also be adapted to the anaerobic growth requirements of most intestinal bacteria. We have developed a protocol to assemble ordered libraries of transposon insertion mutants that is fast, cheap and effective for even strict anaerobes. The protocol differs from currently available methods by making use of cell sorting to order the library and barcoded transposons to facilitate the localization of ordered mutations in the library. By tracking transposon insertions using barcode sequencing, our approach increases the accuracy and reduces the time and effort required to locate mutants in the library. Ordered libraries can be sorted and characterized over the course of 2 weeks using this approach. We expect this protocol will lower the barrier to generating comprehensive, ordered mutant libraries for many species in the human microbiota, allowing for new investigations into genotype–phenotype relationships within this important microbial ecosystem. This protocol assembles ordered libraries of transposon insertion mutants, even for strict anaerobes. It uses cell sorting to order the library and tracks transposon insertions using barcode sequencing to locate individual mutant strains in the ordered library.

... read more

Topics: Anaerobic bacteria (55%)

2 Citations


Open accessJournal ArticleDOI: 10.3389/FNUT.2021.722557
Rui Zhang1, Jianping Wu2, Yu Lei3, Yunpeng Bai1  +8 moreInstitutions (3)
Abstract: This study aimed to explore the effects of oregano essential oils (OEO) on the rumen digestive ability using multi-omics sequencing techniques. Twenty-seven castrated Pingliang red cattle were randomly separated into three groups (3 cattle/pen; n = 9) and fed on a daily basal diet supplemented with 0 (Con group), 130 mg (L group), and 260 mg (H group) OEO. The finishing trial lasted for 390 days, and all cattle were slaughtered to collect rumen tissue and content samples. We found that the rumen papillae length in the H group was higher than in the Con group. Amylase concentrations were decreased in the H group than the Con group, whereas the β-glucosidase and cellulase concentrations increased. Compared to the Con group, the relative abundance of propionate and butyrate in the H group was significantly higher. Higher relative abundance of Parabacteroides distasonis and Bacteroides thetaiotaomicron were observed with increasing OEO concentration. The function of rumen microbiota was enriched in the GH43_17 family, mainly encoding xylanase. Besides, metabolites, including heparin, pantetheine, sorbic acid, aspirin, and farnesene concentrations increased with increasing OEO dose. A positive correlation was observed between Parabacteroides distasonis, Bacteroides thetaiotaomicron, and β-glucosidase, cellulase and propionate. The abundance of Parabacteroides distasonis and Parabacteroides_sp._CAG:409 were positively correlated with sorbic acid and farnesene. In summary, OEO supplementation increased the rumen digestive ability by modulating epithelial development and microbiota composition in beef cattle. This study provides a comprehensive insight into the OEO application as an alternative strategy to improve ruminant health production.

... read more

Topics: Parabacteroides distasonis (57%), Rumen (54%), Parabacteroides (53%) ... read more

Open accessJournal ArticleDOI: 10.1111/MMI.14793
Gianluca Prezza, Daniel Ryan, Gohar Mädler1, Sarah Reichardt  +2 moreInstitutions (1)
Abstract: Bacteria employ noncoding RNA molecules for a wide range of biological processes, including scaffolding large molecular complexes, catalyzing chemical reactions, defending against phages, and controlling gene expression. Secondary structures, binding partners, and molecular mechanisms have been determined for numerous small noncoding RNAs (sRNAs) in model aerobic bacteria. However, technical hurdles have largely prevented analogous analyses in the anaerobic gut microbiota. While experimental techniques are being developed to investigate the sRNAs of gut commensals, computational tools and comparative genomics can provide immediate functional insight. Here, using Bacteroides thetaiotaomicron as a representative microbiota member, we illustrate how comparative genomics improves our understanding of RNA biology in an understudied gut bacterium. We investigate putative RNA-binding proteins and predict a Bacteroides cold-shock protein homolog to have an RNA-related function. We apply an in silico protocol incorporating both sequence and structural analysis to determine the consensus structures and conservation of nine Bacteroides noncoding RNA families. Using structure probing, we validate and refine these predictions and deposit them in the Rfam database. Through synteny analyses, we illustrate how genomic coconservation can serve as a predictor of sRNA function. Altogether, this work showcases the power of RNA informatics for investigating the RNA biology of anaerobic microbiota members.

... read more

Topics: Non-coding RNA (56%), Bacteroides thetaiotaomicron (55%), Comparative genomics (54%) ... read more

Open accessPosted ContentDOI: 10.1101/2021.08.13.456315
13 Aug 2021-bioRxiv
Abstract: Magnetotactic bacteria (MTB) are a phylogenetically diverse group of bacteria remarkable for their ability to biomineralize magnetite (Fe3O4) or greigite (Fe3S4) in organelles called magnetosomes. The majority of genes required for magnetosome formation are encoded by a magnetosome gene island (MAI). Most previous genetic studies in MTB have focused on the MAI, using screens to identify key MAI genes or targeted genetics to isolate specific genes and their function in one specific growth condition. Here, we conducted random barcoded transposon mutagenesis (RB-TnSeq) in Magnetospirillum magneticum AMB-1 to identify the global genetic requirements for magnetosome formation under different growth conditions. We generated a library of 184,710 unique strains in a wild-type background, generating ~34 mutant strains for each gene. RB-TnSeq also allowed us to determine the essential gene set of AMB-1 under standard laboratory growth conditions. To pinpoint novel genes that are important for magnetosome formation, we subjected the library to magnetic selection screens in varied growth conditions. We compared biomineralization in standard growth conditions to biomineralization in high iron and anaerobic conditions, respectively. Strains with transposon insertions in the MAI gene mamT had an exacerbated biomineralization defect under both high iron and anerobic conditions compared to standard conditions, adding to our knowledge of the role of MamT in magnetosome formation. Mutants in amb4151, a gene outside of the MAI, are more magnetic than wild-type cells under anaerobic conditions. All three of these phenotypes were validated by creating a markerless deletion strain of the gene and evaluating with TEM imaging. Overall, our results indicate that growth conditions affect which genes are required for biomineralization and that some MAI genes may have more nuanced functions than was previously understood.

... read more

Topics: Magnetosome (61%), Essential gene (53%), Transposon mutagenesis (52%) ... read more

References
  More

120 results found


Open accessJournal ArticleDOI: 10.1093/NAR/GKT1178
Abstract: The Carbohydrate-Active Enzymes database (CAZy; http://www.cazy.org) provides online and continuously updated access to a sequence-based family classification linking the sequence to the specificity and 3D structure of the enzymes that assemble, modify and breakdown oligo- and polysaccharides. Functional and 3D structural information is added and curated on a regular basis based on the available literature. In addition to the use of the database by enzymologists seeking curated information on CAZymes, the dissemination of a stable nomenclature for these enzymes is probably a major contribution of CAZy. The past few years have seen the expansion of the CAZy classification scheme to new families, the development of subfamilies in several families and the power of CAZy for the analysis of genomes and metagenomes. This article outlines the changes that have occurred in CAZy during the past 5 years and presents our novel effort to display the resolution and the carbohydrate ligands in crystallographic complexes of CAZymes.

... read more

Topics: CAZy (68%)

4,078 Citations


Open accessJournal ArticleDOI: 10.1186/1471-2105-4-41
11 Sep 2003-BMC Bioinformatics
Abstract: The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies. We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs) from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after euk aryotic o rthologous g roups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted) proteins encoded in 66 genomes of unicellular organisms. The euk aryotic o rthologous g roups (KOGs) include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens), one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe), and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or ~54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of ~20% of the KOG set. This conserved portion of the KOG set is much greater than the ubiquitous portion of the COG set (~1% of the COGs). In part, this difference is probably due to the small number of included eukaryotic genomes, but it could also reflect the relative compactness of eukaryotes as a clade and the greater evolutionary stability of eukaryotic genomes. The updated collection of orthologous protein sets for prokaryotes and eukaryotes is expected to be a useful platform for functional annotation of newly sequenced genomes, including those of complex eukaryotes, and genome-wide evolutionary studies.

... read more

Topics: Genome (57%), Comparative genomics (56%)

3,856 Citations


Open accessJournal ArticleDOI: 10.1093/NAR/GKY995
Sara El-Gebali1, Jaina Mistry1, Alex Bateman1, Sean R. Eddy2  +13 moreInstitutions (5)
Abstract: The last few years have witnessed significant changes in Pfam (https://pfam.xfam.org). The number of families has grown substantially to a total of 17,929 in release 32.0. New additions have been coupled with efforts to improve existing families, including refinement of domain boundaries, their classification into Pfam clans, as well as their functional annotation. We recently began to collaborate with the RepeatsDB resource to improve the definition of tandem repeat families within Pfam. We carried out a significant comparison to the structural classification database, namely the Evolutionary Classification of Protein Domains (ECOD) that led to the creation of 825 new families based on their set of uncharacterized families (EUFs). Furthermore, we also connected Pfam entries to the Sequence Ontology (SO) through mapping of the Pfam type definitions to SO terms. Since Pfam has many community contributors, we recently enabled the linking between authorship of all Pfam entries with the corresponding authors' ORCID identifiers. This effectively permits authors to claim credit for their Pfam curation and link them to their ORCID record.

... read more

2,535 Citations


Open accessJournal ArticleDOI: 10.1038/NRG3182
Ilseung Cho1, Martin J. BlaserInstitutions (1)
Abstract: Interest in the role of the microbiome in human health has burgeoned over the past decade with the advent of new technologies for interrogating complex microbial communities. The large-scale dynamics of the microbiome can be described by many of the tools and observations used in the study of population ecology. Deciphering the metagenome and its aggregate genetic information can also be used to understand the functional properties of the microbial community. Both the microbiome and metagenome probably have important functions in health and disease; their exploration is a frontier in human genetics.

... read more

Topics: Microbiome (62%), Human microbiome (57%), Metagenomics (52%)

2,288 Citations


Open accessJournal ArticleDOI: 10.1093/NAR/GKI866
Ross Overbeek, Tadhg P. Begley1, Ralph Butler2, Jomuna V. Choudhuri3  +38 moreInstitutions (12)
Abstract: The release of the 1000th complete microbial genome will occur in the next two to three years. In anticipation of this milestone, the Fellowship for Interpretation of Genomes (FIG) launched the Project to Annotate 1000 Genomes. The project is built around the principle that the key to improved accuracy in high-throughput annotation technology is to have experts annotate single subsystems over the complete collection of genomes, rather than having an annotation expert attempt to annotate all of the genes in a single genome. Using the subsystems approach, all of the genes implementing the subsystem are analyzed by an expert in that subsystem. An annotation environment was created where populated subsystems are curated and projected to new genomes. A portable notion of a populated subsystem was defined, and tools developed for exchanging and curating these objects. Tools were also developed to resolve conflicts between populated subsystems. The SEED is the first annotation environment that supports this model of annotation. Here, we describe the subsystem approach, and offer the first release of our growing library of populated subsystems. The initial release of data includes 180 177 distinct proteins with 2133 distinct functional roles. This data comes from 173 subsystems and 383 different organisms.

... read more

1,760 Citations