scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Functional implications of genome topology.

TL;DR: The emerging picture is one of extensive self-enforcing feedback between activity and spatial organization of the genome, suggestive of a self-organizing and self-perpetuating system that uses epigenetic dynamics to regulate genome function in response to regulatory cues and to propagate cell-fate memory.
Abstract: Although genomes are defined by their sequence, the linear arrangement of nucleotides is only their most basic feature. A fundamental property of genomes is their topological organization in three-dimensional space in the intact cell nucleus. The application of imaging methods and genome-wide biochemical approaches, combined with functional data, is revealing the precise nature of genome topology and its regulatory functions in gene expression and genome maintenance. The emerging picture is one of extensive self-enforcing feedback between activity and spatial organization of the genome, suggestive of a self-organizing and self-perpetuating system that uses epigenetic dynamics to regulate genome function in response to regulatory cues and to propagate cell-fate memory.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
09 Oct 2014-Cell
TL;DR: Using ESC cohesin ChIA-PET data to identify the local chromosomal structures at both active and repressed genes across the genome produces a map of enhancer-promoter interactions and reveals that super-enhancer-driven genes generally occur within chromosome structures that are formed by the looping of two interacting CTCF sites co-occupied by cohesIn.

730 citations


Cites background from "Functional implications of genome t..."

  • ...There is much evidence that cohesin and CTCF have roles in connecting gene regulation and chromosome structure in ESCs (Cavalli and Misteli, 2013; Dixon et al., 2012; Gibcus and Dekker, 2013; Gorkin et al., 2014; Merkenschlager and Odom, 2013; PhillipsCremins and Corces, 2013; Phillips-Cremins et al., 2013; Sanyal et al., 2012; Sofueva et al., 2013) but limited knowledge of the these structures across the genome and scant functional evidence that specific structures actually contribute to the control of important ESC genes....

    [...]

  • ...There is much evidence that cohesin and CTCF have roles in connecting gene regulation and chromosome structure in ESCs (Cavalli and Misteli, 2013; Dixon et al., 2012; Gibcus and Dekker, 2013; Gorkin et al., 2014; Merkenschlager and Odom, 2013; Phillips-Cremins and Corces, 2013; PhillipsCremins et…...

    [...]

  • ...The expression of genes within a TAD is somewhat correlated, and thus some TADs tend to have active genes and others tend to have repressed genes (Cavalli and Misteli, 2013; Gibcus and Dekker, 2013; Nora et al., 2012)....

    [...]

01 Oct 2014
TL;DR: In this article, the authors used ESC cohesin ChIA-PET data to identify the local chromosomal structures at both active and repressed genes across the genome and reveal that super-enhancer-driven genes generally occur within chromosome structures that are formed by the looping of two interacting CTCF sites co-occupied by co-hesin.
Abstract: The pluripotent state of embryonic stem cells (ESCs) is produced by active transcription of genes that control cell identity and repression of genes encoding lineage-specifying developmental regulators. Here, we use ESC cohesin ChIA-PET data to identify the local chromosomal structures at both active and repressed genes across the genome. The results produce a map of enhancer-promoter interactions and reveal that super-enhancer-driven genes generally occur within chromosome structures that are formed by the looping of two interacting CTCF sites co-occupied by cohesin. These looped structures form insulated neighborhoods whose integrity is important for proper expression of local genes. We also find that repressed genes encoding lineage-specifying developmental regulators occur within insulated neighborhoods. These results provide insights into the relationship between transcriptional control of cell identity genes and control of local chromosome structure.

603 citations

Journal ArticleDOI
TL;DR: The chromatin-based epigenetic changes that occur during ageing, the role of chromatin modifiers in modulating lifespan and the importance of epigenetic signatures as biomarkers of ageing are reviewed.
Abstract: Ageing is affected by both genetic and non-genetic factors. Here, we review the chromatin-based epigenetic changes that occur during ageing, the role of chromatin modifiers in modulating lifespan and the importance of epigenetic signatures as biomarkers of ageing. We also discuss how epigenome remodelling by environmental stimuli affects several aspects of transcription and genomic stability, with important consequences for longevity, and outline epigenetic differences between the 'mortal soma' and the 'immortal germ line'. Finally, we discuss the inheritance of characteristics of ageing and potential chromatin-based strategies to delay or reverse hallmarks of ageing or age-related diseases.

477 citations

Journal ArticleDOI
24 Sep 2015-Cell
TL;DR: The consistency of NL contacts is inversely linked to gene activity in single cells and correlates positively with the heterochromatic histone modification H3K9me3, which highlights fundamental principles of single-cell chromatin organization.

397 citations

Journal ArticleDOI
12 Mar 2015-Cell
TL;DR: The current understanding of how these functional genomic "secondary and tertiary structures" form a blueprint for global nuclear architecture and the potential they hold for understanding and manipulating genomic regulation are described.

385 citations


Cites background from "Functional implications of genome t..."

  • ...Collectively, these studies demonstrated a correlation between chromatin topology and underlying gene activity, without resolving whether chromosome folding is a cause or consequence of genomic functions (Cavalli and Misteli, 2013; de Laat and Duboule, 2013)....

    [...]

References
More filters
Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.
Abstract: The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

13,548 citations

Journal ArticleDOI
17 May 2012-Nature
TL;DR: It is found that the boundaries of topological domains are enriched for the insulator binding protein CTCF, housekeeping genes, transfer RNAs and short interspersed element (SINE) retrotransposons, indicating that these factors may have a role in establishing the topological domain structure of the genome.
Abstract: The spatial organization of the genome is intimately linked to its biological function, yet our understanding of higher order genomic structure is coarse, fragmented and incomplete. In the nucleus of eukaryotic cells, interphase chromosomes occupy distinct chromosome territories, and numerous models have been proposed for how chromosomes fold within chromosome territories. These models, however, provide only few mechanistic details about the relationship between higher order chromatin structure and genome function. Recent advances in genomic technologies have led to rapid advances in the study of three-dimensional genome organization. In particular, Hi-C has been introduced as a method for identifying higher order chromatin interactions genome wide. Here we investigate the three-dimensional organization of the human and mouse genomes in embryonic stem cells and terminally differentiated cell types at unprecedented resolution. We identify large, megabase-sized local chromatin interaction domains, which we term 'topological domains', as a pervasive structural feature of the genome organization. These domains correlate with regions of the genome that constrain the spread of heterochromatin. The domains are stable across different cell types and highly conserved across species, indicating that topological domains are an inherent property of mammalian genomes. Finally, we find that the boundaries of topological domains are enriched for the insulator binding protein CTCF, housekeeping genes, transfer RNAs and short interspersed element (SINE) retrotransposons, indicating that these factors may have a role in establishing the topological domain structure of the genome.

5,774 citations

Journal ArticleDOI
02 Aug 2007-Nature
TL;DR: The application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells is reported and it is shown that chromatin state can be read in an allele-specific manner by using single nucleotide polymorphisms.
Abstract: We report the application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells By obtaining over four billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of mouse embryonic stem cells, neural progenitor cells and embryonic fibroblasts We find that lysine 4 and lysine 27 trimethylation effectively discriminates genes that are expressed, poised for expression, or stably repressed, and therefore reflect cell state and lineage potential Lysine 36 trimethylation marks primary coding and non-coding transcripts, facilitating gene annotation Trimethylation of lysine 9 and lysine 20 is detected at satellite, telomeric and active long-terminal repeats, and can spread into proximal unique sequences Lysine 4 and lysine 9 trimethylation marks imprinting control regions Finally, we show that chromatin state can be read in an allele-specific manner by using single nucleotide polymorphisms This study provides a framework for the application of comprehensive chromatin profiling towards characterization of diverse mammalian cell populations

4,166 citations

Journal ArticleDOI
23 Feb 2007-Cell
TL;DR: This Review highlights advances in the understanding of chromatin regulation and discusses how such regulation affects the binding of transcription factors as well as the initiation and elongation steps of transcription.

3,424 citations

01 Sep 2012
TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.

2,767 citations

Related Papers (5)