scispace - formally typeset
Journal ArticleDOI

Fundamental frequency of fully clamped antisymmetric angle-ply laminated plates with structural anisotropy

15 Oct 2018-Composite Structures (Elsevier)-Vol. 202, pp 530-538

...read more


Citations
More filters
Journal Article

[...]

TL;DR: In this paper, carbon fiber-pEEK laminates, manufactured by laser-assisted ATP (LATP) and autoclave, are compared and it is shown that LATP cooling rates are extremely rapid and suggests full through-thickness melting of the pre-preg tape may not occur.
Abstract: Obtaining autoclave-level mechanical properties using in-situ consolidation of thermoplastic composites by Automated Tape Placement (ATP) is challenging. However, relatively recent availability of high quality ATP grade pre-preg material and tape heads equipped with more efficient heat sources (e.g. lasers) offers an opportunity to achieve improved mechanical properties and deposition rates. In the present study, carbon fibre–PEEK laminates, manufactured by laser-assisted ATP (LATP) and autoclave, are compared. Analysis of the through-thickness temperature distribution during LATP processing using thermocouples indicates that LATP cooling rates are extremely rapid and suggests full through-thickness melting of the pre-preg tape may not occur. Inadequate crystallinity, in conjunction with voids, compromised mechanical properties compared to autoclaved laminates but was beneficial in terms of the toughness of LATP laminates. Optimisation of pre-preg properties and processing parameters is required to realise the full potential of the LATP process in terms of mechanical properties, energy requirements, cost and deposition rates.

2 citations


References
More filters
Book

[...]

J. N. Reddy1
19 Nov 1996
TL;DR: The use of composite materials in engineering structures continues to increase dramatically, and there have been significant advances in modeling for general and composite materials and structures in particular as discussed by the authors. But the use of composites is not limited to the aerospace domain.
Abstract: The use of composite materials in engineering structures continues to increase dramatically, and there have been equally significant advances in modeling for general and composite materials and structures in particular. To reflect these developments, renowned author, educator, and researcher J.N. Reddy created an enhanced second edit

4,870 citations

Book

[...]

01 Jan 2004
TL;DR: In this article, the authors present an analysis of the properties of composite materials using the classical and first-order theories of Laminated Composite Plates and shells, as well as a detailed analysis of their properties.
Abstract: Equations of Anisotropic Elasticity, Virtual Work Principles, and Variational Methods Fiber-Reinforced Composite Materials Mathematical Preliminaries Equations of Anisotropic Entropy Virtual Work Principles Variational Methods Summary Introduction to Composite Materials Basic Concepts and Terminology Constitutive Equations of a Lamina Transformation of Stresses and Strains Plan Stress Constitutive Relations Classical and First-Order Theories of Laminated Composite Plates Introduction An Overview of Laminated Plate Theories The Classical Laminated Plate Theory The First-Order Laminated Plate Theory Laminate Stiffnesses for Selected Laminates One-Dimensional Analysis of Laminated Composite Plates Introduction Analysis of Laminated Beams Using CLPT Analysis of Laminated Beams Using FSDT Cylindrical Bending Using CLPT Cylindrical Bending Using FSDT Vibration Suppression in Beams Closing Remarks Analysis of Specially Orthotropic Laminates Using CLPT Introduction Bending of Simply Supported Rectangular Plates Bending of Plates with Two Opposite Edges Simply Supported Bending of Rectangular Plates with Various Boundary Conditions Buckling of Simply Supported Plates Under Compressive Loads Buckling of Rectangular Plates Under In-Plane Shear Load Vibration of Simply Supported Plates Buckling and Vibration of Plates with Two Parallel Edges Simply Supported Transient Analysis Closure Analytical Solutions of Rectangular Laminated Plates Using CLPT Governing Equations in Terms of Displacements Admissible Boundary Conditions for the Navier Solutions Navier Solutions of Antisymmetric Cross-Ply Laminates Navier Solutions of Antisymmetric Angle-Ply Laminates The Levy Solutions Analysis of Midplane Symmetric Laminates Transient Analysis Summary Analytical Solutions of Rectangular Laminated Plates Using FSDT Introduction Simply Supported Antisymmetric Cross-Ply Laminated Plates Simply Supported Antisymmetric Angle-Ply Laminated Plates Antisymmetric Cross-Ply Laminates with Two Opposite Edges Simply Supported Antisymmetric Angle-Ply Laminates with Two Opposite Edges Simply Supported Transient Solutions Vibration Control of Laminated Plates Summary Theory and Analysis of Laminated Shells Introduction Governing Equations Theory of Doubly-Curved Shell Vibration and Buckling of Cross-Ply Laminated Circular Cylindrical Shells Linear Finite Element Analysis of Composite Plates and Shells Introduction Finite Element Models of the Classical Plate Theory (CLPT) Finite Element Models of Shear Deformation Plate Theory (FSDT) Finite Element Analysis of Shells Summary Nonlinear Analysis of Composite Plates and Shells Introduction Classical Plate Theory First-Order Shear Deformation Plate Theory Time Approximation and the Newton-Raphson Method Numerical Examples of Plates Functionally Graded Plates Finite Element Models of Laminated Shell Theory Continuum Shell Finite Element Postbuckling Response and Progressive Failure of Composite Panels in Compression Closure Third-Order Theory of Laminated Composite Plates and Shells Introduction A Third-Order Plate Theory Higher-Order Laminate Stiffness Characteristics The Navier Solutions Levy Solutions of Cross-Ply Laminates Finite Element Model of Plates Equations of Motion of the Third-Order Theory of Doubly-Curved Shells Layerwise Theory and Variable Kinematic Model Introduction Development of the Theory Finite Element Model Variable Kinematic Formulations Application to Adaptive Structures Layerwise Theory of Cylindrical Shell Closure Subject Index

3,456 citations

Book

[...]

01 Jan 1979

1,971 citations

Book

[...]

28 Feb 1986
TL;DR: In this paper, the authors introduce the concept of anisotropic elasticity and composite Laminate Theory for composite materials, and present a test standard for polymer matrix composites.
Abstract: Preface to the Second Edition. Preface to the First Edition. 1. Introduction to Composite Materials. 2. Anisotropic Elasticity and Composite Laminate Theory. 3. Plates and Panels of Composite Materials. 4. Beams, Columns and Rods of Composite Materials. 5. Composite Material Shells. 6. Energy Methods For Composite Material Structures. 7. Strength and Failure Theories. 8. Joining of Composite Material Structures. 9. Introduction to Composite Design. Appendices: A-1. Micromechanics. A-2. Test Standards for Polymer Matrix Composites. A-3. Properties of Various Polymer Composites. Author Index. Subject Index.

1,127 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the authors present failure criteria for thin-walled composite beams with shear deformation and cross-sectional properties of thin-wall composite beams, as well as the buckling loads and natural frequencies of orthotropic beams.
Abstract: Preface List of symbols 1. Introduction 2. Displacements, strains, stresses 3. Laminated composites 4. Thin plates 5. Sandwich plates 6. Beams 7. Beams with shear deformation 8. Shells 9. Finite element analysis 10. Failure criteria 11. Micromechanics Appendix A. Cross-sectional properties of thin-walled composite beams Appendix B. Buckling loads and natural frequencies of orthotropic beams with shear deformation Appendix C. Typical material properties Index.

717 citations