scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits

TL;DR: A comprehensive review of the physical phenomena governing homogeneous charge compression ignition (HCCI) operation, with particular emphasis on high load conditions, is provided in this paper, with suggestions on how to inexpensively enable low emissions of all regulated emissions.
About: This article is published in Progress in Energy and Combustion Science.The article was published on 2013-10-01. It has received 481 citations till now. The article focuses on the topics: Homogeneous charge compression ignition & Internal combustion engine.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a dual fuel engine combustion technology called Reactivity Controlled Compression Ignition (RCCI) is highlighted, since it provides more efficient control over the combustion process and has the capability to lower fuel use and pollutant emissions.

889 citations

Journal ArticleDOI
TL;DR: A detailed overview of recent results on alcohol combustion can be found in this paper, with a particular emphasis on butanols and other linear and branched members of the alcohol family, from methanol to hexanols.

676 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental combustion and emissions properties of advanced biofuels are reviewed, and their impact on engine performance is discussed, in order to guide the selection of optimal conversion routes for obtaining desired fuel combustion properties.
Abstract: The fundamental combustion and emissions properties of advanced biofuels are reviewed, and their impact on engine performance is discussed, in order to guide the selection of optimal conversion routes for obtaining desired fuel combustion properties. Advanced biofuels from second- and third-generation feedstocks can result in significantly reduced life-cycle greenhouse-gas emissions, compared to traditional fossil fuels or first-generation biofuels from food-based feedstocks. These advanced biofuels include alcohols, biodiesel, or synthetic hydrocarbons obtained either from hydrotreatment of oxygenated biofuels or from Fischer–Tropsch synthesis. The engine performance and exhaust pollutant emissions of advanced biofuels are linked to their fundamental combustion properties, which can be modeled using combustion chemical-kinetic mechanisms and surrogate fuel blends. In general, first-generation or advanced biofuels perform well in existing combustion engines, either as blend additives with petro-fuels or as pure “drop-in” replacements. Generally, oxygenated biofuels produce lower intrinsic nitric-oxide and soot emissions than hydrocarbon fuels in fundamental experiments, but engine-test results can be complicated by multiple factors. In order to reduce engine emissions and improve fuel efficiency, several novel technologies, including engines and fuel cells, are being developed. The future fuel requirements for a selection of such novel power-generation technologies, along with their potential performance improvements over existing technologies, are discussed. The trend in the biofuels and transportation industries appears to be moving towards drop-in fuels that require little changes in vehicle or fueling infrastructure, but this comes at a cost of reduced life-cycle efficiencies for the overall alternative-fuel production and utilization system. In the future, fuel-flexible, high-efficiency, and ultra-low-emissions heat-engine and fuel-cell technologies promise to enable consumers to switch to the lowest-cost and cleanest fuel available in their market at any given time. This would also enable society as a whole to maximize its global level of transportation activity, while maintaining urban air quality, within an energy- and carbon-constrained world.

343 citations

01 Apr 1997
TL;DR: A detailed chemical kinetic model has been used to study dimethyl ether (DME) oxidation over a wide range of conditions, such as jet-stirred reactor (JSR) at I and 10 atm, 0.2 < 0 < 2.5, and 800 < T < 1300 K.
Abstract: A detailed chemical kinetic model has been used to study dimethyl ether (DME) oxidation over a wide range of conditions. Experimental results obtained in a jet-stirred reactor (JSR) at I and 10 atm, 0.2 < 0 < 2.5, and 800 < T < 1300 K were modeled, in addition to those generated in a shock tube at 13 and 40 bar, 0 = 1.0 and 650 :5 T :5 1300 K. The JSR results are particularly valuable as they include concentration profiles of reactants, intermediates and products pertinent to the oxidation of DME. These data test the Idnetic model severely, as it must be able to predict the correct distribution and concentrations of intermediate and final products formed in the oxidation process. Additionally, the shock tube results are very useful, as they were taken at low temperatures and at high pressures, and thus undergo negative temperature dependence (NTC) behavior. This behavior is characteristic of the oxidation of saturated hydrocarbon fuels, (e.g. the primary reference fuels, n-heptane and iso- octane) under similar conditions. The numerical model consists of 78 chemical species and 336 chemical reactions. The thermodynamic properties of unknown species pertaining to DME oxidation were calculated using THERM.

280 citations

Journal ArticleDOI
TL;DR: In this article, a metal-fuelled zero-carbon heat engine is proposed for power generation in which metal fuels are burned with air in a combustor to provide clean, high-grade heat.

200 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a detailed chemical kinetic mechanism has been developed and used to study the oxidation of n-heptane in flow reactors, shock tubes, and rapid compression machines, where the initial pressure ranged from 1-42 atm, the temperature from 550-1700 K, the equivalence ratio from 0.3-1.5, and nitrogen-argon dilution from 70-99%.

1,835 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed chemical kinetic mechanism has been developed and used to study the oxidation of iso-octane in a jet-stirred reactor, flow reactors, shock tubes and in a motored engine.

1,279 citations

Book
01 Dec 1996
TL;DR: The Navier-Stokes Equations for Three-dimensional Reacting Flows (NSFE) as discussed by the authors describe the Navier Stokes equation for three-dimensional reacting flows.
Abstract: Introduction * Fundamental Definitions and Phenomena * Experimental Investigation of Flames * Mathematical Description of Premixed Laminar Flat Flames * Thermodynamics of Combustion Processes * Transport Phenomena * Chemical Kinetics * Reaction Mechanisms * Laminar Prefixed Flames * Laminar Nonpremixed Flames * Ignition Processes * The Navier-Stokes Equations for Three-Dimensional Reacting Flows * Turbulent Reacting Flows * Turbulent Nonpremixed Flames * Turbulent Premixed Flames * Combustion of Liquid and Solid Fuels * Low-Temperature Oxidation, Engine Knock * Formation of Nitric Oxides * Formation of Hydrocarbons and Soot.

1,176 citations

Proceedings ArticleDOI
TL;DR: In this paper, a phenomenological description of how direct-injection (DI) diesel combustion occurs has been derived from laser-sheet imaging and other recent optical data, which is summarized in a series of idealized schematics that depict the combustion process for a typical, modern-diesel-engine condition.
Abstract: A phenomenological description, or “conceptual model,” of how direct-injection (DI) diesel combustion occurs has been derived from laser-sheet imaging and other recent optical data. To provide background, the most relevant of the recent imaging data of the author and co-workers are presented and discussed, as are the relationships between the various imaging measurements. Where appropriate, other supporting data from the literature is also discussed. Then, this combined information is summarized in a series of idealized schematics that depict the combustion process for a typical, modern-diesel-engine condition. The schematics incorporate virtually all of the information provided by our recent imaging data including: liquidand vapor-fuel zones, fuel/air mixing, autoignition, reaction zones, and soot distributions. By combining all these elements, the schematics show the evolution of a reacting diesel fuel jet from the start of fuel injection up through the first part of the mixing-controlled burn (i.e. until the end of fuel injection). In addition, for a “developed” reacting diesel fuel jet during the mixingcontrolled burn, the schematics explain the sequence of events that occurs as fuel moves from the injector downstream through the mixing, combustion, and emissions-formation processes. The conceptual model depicted in these schematics also gives insight into the most likely mechanisms for soot formation and destruction and NO formation during the portion of the DI diesel combustion event discussed.

1,109 citations