scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fundamentals and Applications of Metasurfaces

01 Apr 2017-Vol. 1, Iss: 4, pp 1600064
TL;DR: Metasurfaces have become a rapidly growing field of research in recent years due to their exceptional abilities in light manipulation and versatility in ultrathin optical applications and are promising for integration with on-chip nanophotonic devices owing to their planar profiles.
Abstract: Metasurfaces have become a rapidly growing field of research in recent years due to their exceptional abilities in light manipulation and versatility in ultrathin optical applications. They also significantly benefit from their simplified fabrication process compared to metamaterials and are promising for integration with on-chip nanophotonic devices owing to their planar profiles. The recent progress in metasurfaces is reviewed and they are classified into six categories according to their underlying physics for realizing full 2π phase manipulation. Starting from multi-resonance and gap-plasmon metasurfaces that rely on the geometric effect of plasmonic nanoantennas, Pancharatnam–Berry-phase metasurfaces, on the other hand, use identical nanoantennas with varying rotation angles. The recent development of Huygens' metasurfaces and all-dielectric metasurfaces especially benefit from highly efficient transmission applications. An overview of state-of-the-art fabrication technologies is introduced, ranging from the commonly used processes such as electron beam and focused-ion-beam lithography to some emerging techniques, such as self-assembly and nanoimprint lithography. A variety of functional materials incorporated to reconfigurable or tunable metasurfaces is also presented. Finally, a few of the current intriguing metasurface-based applications are discussed, and opinions on future prospects are provided.
Citations
More filters
Journal ArticleDOI
TL;DR: Integrating the Pancharatnam–Berry phase with integrated resonant nanoantennas in a metalens design produces an achromatic device capable of full-colour imaging in the visible range in transmission mode.
Abstract: Metalenses consist of an array of optical nanoantennas on a surface capable of manipulating the properties of an incoming light wavefront. Various flat optical components, such as polarizers, optical imaging encoders, tunable phase modulators and a retroreflector, have been demonstrated using a metalens design. An open issue, especially problematic for colour imaging and display applications, is the correction of chromatic aberration, an intrinsic effect originating from the specific resonance and limited working bandwidth of each nanoantenna. As a result, no metalens has demonstrated full-colour imaging in the visible wavelength. Here, we show a design and fabrication that consists of GaN-based integrated-resonant unit elements to achieve an achromatic metalens operating in the entire visible region in transmission mode. The focal length of our metalenses remains unchanged as the incident wavelength is varied from 400 to 660 nm, demonstrating complete elimination of chromatic aberration at about 49% bandwidth of the central working wavelength. The average efficiency of a metalens with a numerical aperture of 0.106 is about 40% over the whole visible spectrum. We also show some examples of full-colour imaging based on this design. Integrating the Pancharatnam–Berry phase with integrated resonant nanoantennas in a metalens design produces an achromatic device capable of full-colour imaging in the visible range in transmission mode.

1,063 citations

Journal ArticleDOI
01 Dec 2017-Science
TL;DR: The key advantages of using dielectric phase-shifting elements with low optical loss and strong light confinement in the visible and near-infrared regions as BBs of flat lenses (metalenses) are discussed.
Abstract: BACKGROUND Future high-performance portable and wearable optical devices and systems with small footprints and low weights will require components with small form factors and enhanced functionality. Planar components based on diffractive optics (e.g., gratings, Fresnel lenses) and thin-film optics (e.g., dielectric filters, Bragg reflectors) have been around for decades; however, their limited functionality and difficulty of integration have been key incentives to search for better alternatives. Owing to its potential for vertical integration and marked design flexibility, metasurface-based flat optics provides a rare opportunity to overcome these challenges. The building blocks (BBs) of metasurfaces are subwavelength-spaced scatterers. By suitably adjusting their shape, size, position, and orientation with high spatial resolution, one can control the basic properties of light (phase, amplitude, polarization) and thus engineer its wavefront at will. This possibility greatly expands the frontiers of optical design by enabling multifunctional components with attendant reduction of thickness, size, and complexity. ADVANCES Recent progress in fabrication techniques and in the theory and design of metasurfaces holds promise for this new optical platform (metaoptics) to replace or complement conventional components in many applications. One major advance has been the migration to all-dielectric metasurfaces. Here, we discuss the key advantages of using dielectric phase-shifting elements with low optical loss and strong light confinement in the visible and near-infrared regions as BBs of flat lenses (metalenses). High–numerical aperture metalenses that are free of spherical aberrations have been implemented to achieve diffraction-limited focusing with subwavelength resolution, without requiring the complex shapes of aspherical lenses. Achromatic metalenses at discrete wavelengths and over a bandwidth have been realized by dispersion engineering of the phase shifters. By suitably adjusting the geometrical parameters of the latter, one can impart polarization- and wavelength-dependent phases to realize multifunctional metalenses with only one ultrathin layer. For example, polarization-sensitive flat lenses for chiral imaging and circular dichroism spectroscopy with high resolution have been realized, and off-axis metalenses with large engineered angular dispersion have been used to demonstrate miniature spectrometers. The fabrication of metalenses is straightforward and often requires one-step lithography, which can be based on high-throughput techniques such as deep-ultraviolet and nanoimprint lithography. OUTLOOK In the near future, the ability to fabricate metalenses and other metaoptical components with a planar process using the same lithographic tools for manufacturing integrated circuits (ICs) will have far-reaching implications. We envision that camera modules widely employed in cell phones, laptops, and myriad applications will become thinner and easier to optically align and package, with metalenses and the complementary metal-oxide semiconductor–compatible sensor manufactured by the same foundries. The unprecedented design freedom of metalenses and other metasurface optical components will greatly expand the range of applications of micro-optics and integrated optics. We foresee a rapidly increasing density of nanoscale optical elements on metasurface-based chips, with attendant marked increases in performance and number of functionalities. Such digital optics will probably follow a Moore-like law, similar to that governing the scaling of ICs, leading to a wide range of high-volume applications.

675 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate tunable metasurface doublets, based on microelectromechanical systems (MEMS), with more than 60 diopters (about 4%) change in the optical power upon a 1-μm movement of one metasuran, and a scanning frequency that can potentially reach a few kHz.
Abstract: Varifocal lenses, conventionally implemented by changing the axial distance between multiple optical elements, have a wide range of applications in imaging and optical beam scanning. The use of conventional bulky refractive elements makes these varifocal lenses large, slow, and limits their tunability. Metasurfaces, a new category of lithographically defined diffractive devices, enable thin and lightweight optical elements with precisely engineered phase profiles. Here we demonstrate tunable metasurface doublets, based on microelectromechanical systems (MEMS), with more than 60 diopters (about 4%) change in the optical power upon a 1-μm movement of one metasurface, and a scanning frequency that can potentially reach a few kHz. They can also be integrated with a third metasurface to make compact microscopes (~1 mm thick) with a large corrected field of view (~500 μm or 40 degrees) and fast axial scanning for 3D imaging. This paves the way towards MEMS-integrated metasurfaces as a platform for tunable and reconfigurable optics.

461 citations

Journal ArticleDOI
TL;DR: In this article, a review of the recent developments in dielectric structures for shaping optical wavefronts is presented with an outlook on future potentials and challenges that need to be overcome.
Abstract: During the past few years, metasurfaces have been used to demonstrate optical elements and systems with capabilities that surpass those of conventional diffractive optics. Here, we review some of these recent developments, with a focus on dielectric structures for shaping optical wavefronts. We discuss the mechanisms for achieving steep phase gradients with high efficiency, simultaneous polarization and phase control, controlling the chromatic dispersion, and controlling the angular response. Then, we review applications in imaging, conformal optics, tunable devices, and optical systems. We conclude with an outlook on future potentials and challenges that need to be overcome.

424 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the state of the art in the field of small-scale nonlinear optics, with special emphasis on high-harmonic generation from ultrathin metasurfaces based on plasmonic and high-index dielectric resonators.

411 citations

References
More filters
Journal ArticleDOI
23 Jun 2006-Science
TL;DR: This work shows how electromagnetic fields can be redirected at will and proposes a design strategy that has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.
Abstract: Using the freedom of design that metamaterials provide, we show how electromagnetic fields can be redirected at will and propose a design strategy. The conserved fields-electric displacement field D, magnetic induction field B, and Poynting vector B-are all displaced in a consistent manner. A simple illustration is given of the cloaking of a proscribed volume of space to exclude completely all electromagnetic fields. Our work has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.

7,811 citations

Journal ArticleDOI
21 Oct 2011-Science
TL;DR: In this article, a two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint phase discontinuities on propagating light as it traverses the interface between two media.
Abstract: Conventional optical components rely on gradual phase shifts accumulated during light propagation to shape light beams. New degrees of freedom are attained by introducing abrupt phase changes over the scale of the wavelength. A two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint such phase discontinuities on propagating light as it traverses the interface between two media. Anomalous reflection and refraction phenomena are observed in this regime in optically thin arrays of metallic antennas on silicon with a linear phase variation along the interface, which are in excellent agreement with generalized laws derived from Fermat’s principle. Phase discontinuities provide great flexibility in the design of light beams, as illustrated by the generation of optical vortices through use of planar designer metallic interfaces.

6,763 citations

Journal ArticleDOI
TL;DR: This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam.
Abstract: Metamaterials are artificially fabricated materials that allow for the control of light and acoustic waves in a manner that is not possible in nature. This Review covers the recent developments in the study of so-called metasurfaces, which offer the possibility of controlling light with ultrathin, planar optical components. Conventional optical components such as lenses, waveplates and holograms rely on light propagation over distances much larger than the wavelength to shape wavefronts. In this way substantial changes of the amplitude, phase or polarization of light waves are gradually accumulated along the optical path. This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam. Metasurfaces are generally created by assembling arrays of miniature, anisotropic light scatterers (that is, resonators such as optical antennas). The spacing between antennas and their dimensions are much smaller than the wavelength. As a result the metasurfaces, on account of Huygens principle, are able to mould optical wavefronts into arbitrary shapes with subwavelength resolution by introducing spatial variations in the optical response of the light scatterers. Such gradient metasurfaces go beyond the well-established technology of frequency selective surfaces made of periodic structures and are extending to new spectral regions the functionalities of conventional microwave and millimetre-wave transmit-arrays and reflect-arrays. Metasurfaces can also be created by using ultrathin films of materials with large optical losses. By using the controllable abrupt phase shifts associated with reflection or transmission of light waves at the interface between lossy materials, such metasurfaces operate like optically thin cavities that strongly modify the light spectrum. Technology opportunities in various spectral regions and their potential advantages in replacing existing optical components are discussed.

4,613 citations

Journal ArticleDOI
15 Mar 2013-Science
TL;DR: Progress in the optics of metasurfaces is reviewed and promising applications for surface-confined planar photonics components are discussed and the studies of new, low-loss, tunable plasmonic materials—such as transparent conducting oxides and intermetallics—that can be used as building blocks for metAsurfaces will complement the exploration of smart designs and advanced switching capabilities.
Abstract: Metamaterials, or engineered materials with rationally designed, subwavelength-scale building blocks, allow us to control the behavior of physical fields in optical, microwave, radio, acoustic, heat transfer, and other applications with flexibility and performance that are unattainable with naturally available materials. In turn, metasurfaces-planar, ultrathin metamaterials-extend these capabilities even further. Optical metasurfaces offer the fascinating possibility of controlling light with surface-confined, flat components. In the planar photonics concept, it is the reduced dimensionality of the optical metasurfaces that enables new physics and, therefore, leads to functionalities and applications that are distinctly different from those achievable with bulk, multilayer metamaterials. Here, we review the progress in developing optical metasurfaces that has occurred over the past few years with an eye toward the promising future directions in the field.

2,562 citations

Journal ArticleDOI
03 Jun 2016-Science
TL;DR: The results firmly establish that metalenses can have widespread applications in laser-based microscopy, imaging, and spectroscopy, with image qualities comparable to a state-of-the-art commercial objective.
Abstract: Subwavelength resolution imaging requires high numerical aperture (NA) lenses, which are bulky and expensive. Metasurfaces allow the miniaturization of conventional refractive optics into planar structures. We show that high-aspect-ratio titanium dioxide metasurfaces can be fabricated and designed as metalenses with NA = 0.8. Diffraction-limited focusing is demonstrated at wavelengths of 405, 532, and 660 nm with corresponding efficiencies of 86, 73, and 66%. The metalenses can resolve nanoscale features separated by subwavelength distances and provide magnification as high as 170×, with image qualities comparable to a state-of-the-art commercial objective. Our results firmly establish that metalenses can have widespread applications in laser-based microscopy, imaging, and spectroscopy.

2,406 citations

Trending Questions (1)
What are some of the most interesting patents on metsurfaces?

The provided paper does not mention any specific patents on metasurfaces.