scispace - formally typeset
Search or ask a question
Book

Fundamentals of Industrial Catalytic Processes

30 Nov 2001-
TL;DR: Catalysis - introduction and fundamentals catalytic phenomena catalyst materials, properties and preparation catalyst characterization and selection reactors, reactor design, and activity testing catalyst deactivation - causes, mechanisms and treatment hydrogen production and synthesis gas reactions hydrogenation and dehydrogenation of organic compounds oxidation of inorganic and organic compounds petroleum refining and processing environmental catalysis - stationary sources homogenous catalysis, enzyme catalysis and polymerization catalysis as mentioned in this paper.
Abstract: Catalysis - introduction and fundamentals catalytic phenomena catalyst materials, properties and preparation catalyst characterization and selection reactors, reactor design, and activity testing catalyst deactivation - causes, mechanisms and treatment hydrogen production and synthesis gas reactions hydrogenation and dehydrogenation of organic compounds oxidation of inorganic and organic compounds petroleum refining and processing environmental catalysis - stationary sources homogenous catalysis, enzyme catalysis, and polymerization catalysis.
Citations
More filters
Journal ArticleDOI
TL;DR: The literature treating mechanisms of catalyst deactivation is reviewed in this paper, which can be classified into six distinct types: (i) poisoning, (ii) fouling, (iii) thermal degradation, (iv) vapor compound formation accompanied by transport, (v) vapor solid and/or solid solid reactions, and (vi) attrition/crushing.
Abstract: The literature treating mechanisms of catalyst deactivation is reviewed. Intrinsic mechanisms of catalyst deactivation are many; nevertheless, they can be classified into six distinct types: (i) poisoning, (ii) fouling, (iii) thermal degradation, (iv) vapor compound formation accompanied by transport, (v) vapor-solid and/or solid-solid reactions, and (vi) attrition/crushing. As (i), (iv), and (v) are chemical in nature and (ii) and (v) are mechanical, the causes of deactivation are basically three-fold: chemical, mechanical and thermal. Each of these six mechanisms is defined and its features are illustrated by data and examples from the literature. The status of knowledge and needs for further work are also summarized for each type of deactivation mechanism. The development during the past two decades of more sophisticated surface spectroscopies and powerful computer technologies provides opportunities for obtaining substantially better understanding of deactivation mechanisms and building this understanding into comprehensive mathematical models that will enable more effective design and optimization of processes involving deactivating catalysts. © 2001 Elsevier Science B.V. All rights reserved.

2,526 citations

Journal ArticleDOI
TL;DR: Providing a future energy supply that is secure and CO_2-neutral will require switching to nonfossil energy sources such as wind, solar, nuclear, and geothermal energy and developing methods for transforming the energy produced by these new sources into forms that can be stored, transported, and used upon demand.
Abstract: Two major energy-related problems confront the world in the next 50 years. First, increased worldwide competition for gradually depleting fossil fuel reserves (derived from past photosynthesis) will lead to higher costs, both monetarily and politically. Second, atmospheric CO_2 levels are at their highest recorded level since records began. Further increases are predicted to produce large and uncontrollable impacts on the world climate. These projected impacts extend beyond climate to ocean acidification, because the ocean is a major sink for atmospheric CO2.1 Providing a future energy supply that is secure and CO_2-neutral will require switching to nonfossil energy sources such as wind, solar, nuclear, and geothermal energy and developing methods for transforming the energy produced by these new sources into forms that can be stored, transported, and used upon demand.

1,651 citations

Journal ArticleDOI
TL;DR: In this article, a review on deactivation and regeneration of heterogeneous catalysts classifies deactivation by type (chemical, thermal, and mechanical) and by mechanism (poisoning, fouling, thermal degradation, vapor formation, vapor-solid and solid-solid reactions, and attrition/crushing).
Abstract: Deactivation of heterogeneous catalysts is a ubiquitous problem that causes loss of catalytic rate with time. This review on deactivation and regeneration of heterogeneous catalysts classifies deactivation by type (chemical, thermal, and mechanical) and by mechanism (poisoning, fouling, thermal degradation, vapor formation, vapor-solid and solid-solid reactions, and attrition/crushing). The key features and considerations for each of these deactivation types is reviewed in detail with reference to the latest literature reports in these areas. Two case studies on the deactivation mechanisms of catalysts used for cobalt Fischer-Tropsch and selective catalytic reduction are considered to provide additional depth in the topics of sintering, coking, poisoning, and fouling. Regeneration considerations and options are also briefly discussed for each deactivation mechanism.

1,173 citations

Journal ArticleDOI
26 Nov 2010-Science
TL;DR: It is shown that pyrolysis oils can be converted into industrial commodity chemical feedstocks using an integrated catalytic approach that combines hydroprocessing with zeolite catalysis, and the total product yield can be adjusted depending on market values of the chemical feedstock and the relative prices of the hydrogen and biomass.
Abstract: Fast pyrolysis of lignocellulosic biomass produces a renewable liquid fuel called pyrolysis oil that is the cheapest liquid fuel produced from biomass today Here we show that pyrolysis oils can be converted into industrial commodity chemical feedstocks using an integrated catalytic approach that combines hydroprocessing with zeolite catalysis The hydroprocessing increases the intrinsic hydrogen content of the pyrolysis oil, producing polyols and alcohols The zeolite catalyst then converts these hydrogenated products into light olefins and aromatic hydrocarbons in a yield as much as three times higher than that produced with the pure pyrolysis oil The yield of aromatic hydrocarbons and light olefins from the biomass conversion over zeolite is proportional to the intrinsic amount of hydrogen added to the biomass feedstock during hydroprocessing The total product yield can be adjusted depending on market values of the chemical feedstocks and the relative prices of the hydrogen and biomass

986 citations

Journal ArticleDOI
17 Oct 2008-Science
TL;DR: A catalytic approach for the conversion of carbohydrates to specific classes of hydrocarbons for use as liquid transportation fuels, based on the integration of several flow reactors operated in a cascade mode, where the effluent from the one reactor is simply fed to the next reactor.
Abstract: It is imperative to develop more efficient processes for conversion of biomass to liquid fuels, such that the cost of these fuels would be competitive with the cost of fuels derived from petroleum. We report a catalytic approach for the conversion of carbohydrates to specific classes of hydrocarbons for use as liquid transportation fuels, based on the integration of several flow reactors operated in a cascade mode, where the effluent from the one reactor is simply fed to the next reactor. This approach can be tuned for production of branched hydrocarbons and aromatic compounds in gasoline, or longer-chain, less highly branched hydrocarbons in diesel and jet fuels. The liquid organic effluent from the first flow reactor contains monofunctional compounds, such as alcohols, ketones, carboxylic acids, and heterocycles, that can also be used to provide reactive intermediates for fine chemicals and polymers markets.

863 citations