scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients

01 Nov 2013-Numerische Mathematik (Springer Berlin Heidelberg)-Vol. 125, Iss: 3, pp 569-600
TL;DR: It is proved that convergence of the multilevel Monte Carlo algorithm for estimating any bounded, linear functional and any continuously Fréchet differentiable non-linear functional of the solution is convergence.
Abstract: We consider the application of multilevel Monte Carlo methods to elliptic PDEs with random coefficients. We focus on models of the random coefficient that lack uniform ellipticity and boundedness with respect to the random parameter, and that only have limited spatial regularity. We extend the finite element error analysis for this type of equation, carried out in Charrier et al. (SIAM J Numer Anal, 2013), to more difficult problems, posed on non-smooth domains and with discontinuities in the coefficient. For this wider class of model problem, we prove convergence of the multilevel Monte Carlo algorithm for estimating any bounded, linear functional and any continuously Frechet differentiable non-linear functional of the solution. We further improve the performance of the multilevel estimator by introducing level dependent truncations of the Karhunen---Loeve expansion of the random coefficient. Numerical results complete the paper.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In many situations across computational science and engineering, multiple computational models are available that describe a system of interest as discussed by the authors, and these different models have varying evaluation costs, i.e.
Abstract: In many situations across computational science and engineering, multiple computational models are available that describe a system of interest. These different models have varying evaluation costs...

678 citations

Journal ArticleDOI
TL;DR: A review of the progress in multilevel Monte Carlo path simulation can be found in this article, where the authors highlight the simplicity, flexibility and generality of the multi-level Monte Carlo approach.
Abstract: The author’s presentation of multilevel Monte Carlo path simulation at the MCQMC 2006 conference stimulated a lot of research into multilevel Monte Carlo methods. This paper reviews the progress since then, emphasising the simplicity, flexibility and generality of the multilevel Monte Carlo approach. It also offers a few original ideas and suggests areas for future research.

590 citations

Journal ArticleDOI
TL;DR: A survey of recent developments in lattice methods, digital nets, and related themes can be found in this paper, where the authors present a contemporary review of QMC (quasi-Monte Carlo) methods, that is, equalweight rules for the approximate evaluation of high-dimensional integrals over the unit cube [0, 1] s, w heres may be large, or even infinite.
Abstract: This paper is a contemporary review of QMC (‘quasi-Monte Carlo’) methods, that is, equal-weight rules for the approximate evaluation of high-dimensional integrals over the unit cube [0, 1] s ,w heres may be large, or even infinite. After a general introduction, the paper surveys recent developments in lattice methods, digital nets, and related themes. Among those recent developments are methods of construction of both lattices and digital nets, to yield QMC rules that have a prescribed rate of convergence for sufficiently smooth functions, and ideally also guaranteed slow growth (or no growth) of the worst-case error as s increases. A crucial role is played by parameters called ‘weights’, since a careful use of the weight parameters is needed to ensure that the worst-case errors in an appropriately weighted function space are bounded, or grow only slowly, as the dimension s increases. Important tools for the analysis are weighted function spaces, reproducing kernel Hilbert spaces, and discrepancy, all of which are discussed with an appropriate level of detail.

500 citations

01 Jan 2014
TL;DR: This paper is a contemporary review of QMC (‘quasi-Monte Carlo’) methods, that is, equal-weight rules for the approximate evaluation of high-dimensional integrals over the unit cube [0,1]s, where s may be large, or even infinite.
Abstract: This paper is a contemporary review of QMC (‘quasi-Monte Carlo’) methods, that is, equal-weight rules for the approximate evaluation of high-dimensional integrals over the unit cube [0,1]s, where s may be large, or even infinite. After a general introduction, the paper surveys recent developments in lattice methods, digital nets, and related themes. Among those recent developments are methods of construction of both lattices and digital nets, to yield QMC rules that have a prescribed rate of convergence for sufficiently smooth functions, and ideally also guaranteed slow growth (or no growth) of the worst-case error as s increases. A crucial role is played by parameters called ‘weights’, since a careful use of the weight parameters is needed to ensure that the worst-case errors in an appropriately weighted function space are bounded, or grow only slowly, as the dimension s increases. Important tools for the analysis are weighted function spaces, reproducing kernel Hilbert spaces, and discrepancy, all of which are discussed with an appropriate level of detail.

424 citations

Journal ArticleDOI
TL;DR: An information reuse estimator that exploits the autocorrelation structure of the high‐fidelity model in the design space to reduce the cost of repeatedly estimating statistics during the course of optimization.
Abstract: It is important to design robust and reliable systems by accounting for uncertainty and variability in the design process. However, performing optimization in this setting can be computationally expensive, requiring many evaluations of the numerical model to compute statistics of the system performance at every optimization iteration. This paper proposes a multifidelity approach to optimization under uncertainty that makes use of inexpensive, low-fidelity models to provide approximate information about the expensive, high-fidelity model. The multifidelity estimator is developed based on the control variate method to reduce the computational cost of achieving a specified mean square error in the statistic estimate. The method optimally allocates the computational load between the two models based on their relative evaluation cost and the strength of the correlation between them. This paper also develops an information reuse estimator that exploits the autocorrelation structure of the high-fidelity model in the design space to reduce the cost of repeatedly estimating statistics during the course of optimization. Finally, a combined estimator incorporates the features of both the multifidelity estimator and the information reuse estimator. The methods demonstrate 90% computational savings in an acoustic horn robust optimization example and practical design turnaround time in a robust wing optimization problem. Copyright © 2014 John Wiley & Sons, Ltd.

166 citations


Cites methods from "Further analysis of multilevel Mont..."

  • ...It resembles multilevel or multigrid MC methods for solving stochastic differential equations in which the estimators from coarse discretizations are used as the ‘control’ to reduce the sampling variance of the estimator from the fine discretization [11–13]....

    [...]

References
More filters
Book
01 Jan 1966
TL;DR: The monograph by T Kato as discussed by the authors is an excellent reference work in the theory of linear operators in Banach and Hilbert spaces and is a thoroughly worthwhile reference work both for graduate students in functional analysis as well as for researchers in perturbation, spectral, and scattering theory.
Abstract: "The monograph by T Kato is an excellent textbook in the theory of linear operators in Banach and Hilbert spaces It is a thoroughly worthwhile reference work both for graduate students in functional analysis as well as for researchers in perturbation, spectral, and scattering theory In chapters 1, 3, 5 operators in finite-dimensional vector spaces, Banach spaces and Hilbert spaces are introduced Stability and perturbation theory are studied in finite-dimensional spaces (chapter 2) and in Banach spaces (chapter 4) Sesquilinear forms in Hilbert spaces are considered in detail (chapter 6), analytic and asymptotic perturbation theory is described (chapter 7 and 8) The fundamentals of semigroup theory are given in chapter 9 The supplementary notes appearing in the second edition of the book gave mainly additional information concerning scattering theory described in chapter 10 The first edition is now 30 years old The revised edition is 20 years old Nevertheless it is a standard textbook for the theory of linear operators It is user-friendly in the sense that any sought after definitions, theorems or proofs may be easily located In the last two decades much progress has been made in understanding some of the topics dealt with in the book, for instance in semigroup and scattering theory However the book has such a high didactical and scientific standard that I can recomment it for any mathematician or physicist interested in this field Zentralblatt MATH, 836

19,846 citations

Book
07 Jan 2013
TL;DR: In this article, Leray-Schauder and Harnack this article considered the Dirichlet Problem for Poisson's Equation and showed that it is a special case of Divergence Form Operators.
Abstract: Chapter 1. Introduction Part I: Linear Equations Chapter 2. Laplace's Equation 2.1 The Mean Value Inequalities 2.2 Maximum and Minimum Principle 2.3 The Harnack Inequality 2.4 Green's Representation 2.5 The Poisson Integral 2.6 Convergence Theorems 2.7 Interior Estimates of Derivatives 2.8 The Dirichlet Problem the Method of Subharmonic Functions 2.9 Capacity Problems Chapter 3. The Classical Maximum Principle 3.1 The Weak Maximum Principle 3.2 The Strong Maximum Principle 3.3 Apriori Bounds 3.4 Gradient Estimates for Poisson's Equation 3.5 A Harnack Inequality 3.6 Operators in Divergence Form Notes Problems Chapter 4. Poisson's Equation and Newtonian Potential 4.1 Holder Continuity 4.2 The Dirichlet Problem for Poisson's Equation 4.3 Holder Estimates for the Second Derivatives 4.4 Estimates at the Boundary 4.5 Holder Estimates for the First Derivatives Notes Problems Chapter 5. Banach and Hilbert Spaces 5.1 The Contraction Mapping 5.2 The Method of Cintinuity 5.3 The Fredholm Alternative 5.4 Dual Spaces and Adjoints 5.5 Hilbert Spaces 5.6 The Projection Theorem 5.7 The Riesz Representation Theorem 5.8 The Lax-Milgram Theorem 5.9 The Fredholm Alternative in Hilbert Spaces 5.10 Weak Compactness Notes Problems Chapter 6. Classical Solutions the Schauder Approach 6.1 The Schauder Interior Estimates 6.2 Boundary and Global Estimates 6.3 The Dirichlet Problem 6.4 Interior and Boundary Regularity 6.5 An Alternative Approach 6.6 Non-Uniformly Elliptic Equations 6.7 Other Boundary Conditions the Obliue Derivative Problem 6.8 Appendix 1: Interpolation Inequalities 6.9 Appendix 2: Extension Lemmas Notes Problems Chapter 7. Sobolev Spaces 7.1 L^p spaces 7.2 Regularization and Approximation by Smooth Functions 7.3 Weak Derivatives 7.4 The Chain Rule 7.5 The W^(k,p) Spaces 7.6 DensityTheorems 7.7 Imbedding Theorems 7.8 Potential Estimates and Imbedding Theorems 7.9 The Morrey and John-Nirenberg Estimes 7.10 Compactness Results 7.11 Difference Quotients 7.12 Extension and Interpolation Notes Problems Chapter 8 Generalized Solutions and Regularity 8.1 The Weak Maximum Principle 8.2 Solvability of the Dirichlet Problem 8.3 Diferentiability of Weak Solutions 8.4 Global Regularity 8.5 Global Boundedness of Weak Solutions 8.6 Local Properties of Weak Solutions 8.7 The Strong Maximum Principle 8.8 The Harnack Inequality 8.9 Holder Continuity 8.10 Local Estimates at the Boundary 8.11 Holder Estimates for the First Derivatives 8.12 The Eigenvalue Problem Notes Problems Chapter 9. Strong Solutions 9.1 Maximum Princiles for Strong Solutions 9.2 L^p Estimates: Preliminary Analysis 9.3 The Marcinkiewicz Interpolation Theorem 9.4 The Calderon-Zygmund Inequality 9.5 L^p Estimates 9.6 The Dirichlet Problem 9.7 A Local Maximum Principle 9.8 Holder and Harnack Estimates 9.9 Local Estimates at the Boundary Notes Problems Part II: Quasilinear Equations Chapter 10. Maximum and Comparison Principles 10.1 The Comparison Principle 10.2 Maximum Principles 10.3 A Counterexample 10.4 Comparison Principles for Divergence Form Operators 10.5 Maximum Principles for Divergence Form Operators Notes Problems Chapter 11. Topological Fixed Point Theorems and Their Application 11.1 The Schauder Fixes Point Theorem 11.2 The Leray-Schauder Theorem: a Special Case 11.3 An Application 11.4 The Leray-Schauder Fixed Point Theorem 11.5 Variational Problems Notes Chapter 12. Equations in Two Variables 12.1 Quasiconformal Mappings 12.2 holder Gradient Estimates for Linear Equations 12.3 The Dirichlet Problem for Uniformly Elliptic Equations 12.4 Non-Uniformly Elliptic Equations Notes Problems Chapter 13. Holder Estimates for

18,443 citations

Book ChapterDOI
01 Jan 1997
TL;DR: In this paper, a class of partial differential equations that generalize and are represented by Laplace's equation was studied. And the authors used the notation D i u, D ij u for partial derivatives with respect to x i and x i, x j and the summation convention on repeated indices.
Abstract: We study in this chapter a class of partial differential equations that generalize and are to a large extent represented by Laplace’s equation. These are the elliptic partial differential equations of second order. A linear partial differential operator L defined by $$ Lu{\text{: = }}{a_{ij}}\left( x \right){D_{ij}}u + {b_i}\left( x \right){D_i}u + c\left( x \right)u $$ is elliptic on Ω ⊂ ℝ n if the symmetric matrix [a ij ] is positive definite for each x ∈ Ω. We have used the notation D i u, D ij u for partial derivatives with respect to x i and x i , x j and the summation convention on repeated indices is used. A nonlinear operator Q, $$ Q\left( u \right): = {a_{ij}}\left( {x,u,Du} \right){D_{ij}}u + b\left( {x,u,Du} \right) $$ [D u = (D 1 u, ..., D n u)], is elliptic on a subset of ℝ n × ℝ × ℝ n ] if [a ij (x, u, p)] is positive definite for all (x, u, p) in this set. Operators of this form are called quasilinear. In all of our examples the domain of the coefficients of the operator Q will be Ω × ℝ × ℝ n for Ω a domain in ℝ n . The function u will be in C 2(Ω) unless explicitly stated otherwise.

8,299 citations


"Further analysis of multilevel Mont..." refers background in this paper

  • ...[14]), and it is meaningful to consider point values....

    [...]

Book
14 Feb 2013
TL;DR: In this article, the construction of a finite element of space in Sobolev spaces has been studied in the context of operator-interpolation theory in n-dimensional variational problems.
Abstract: Preface(2nd ed.).- Preface(1st ed.).- Basic Concepts.- Sobolev Spaces.- Variational Formulation of Elliptic Boundary Value Problems.- The Construction of a Finite Element of Space.- Polynomial Approximation Theory in Sobolev Spaces.- n-Dimensional Variational Problems.- Finite Element Multigrid Methods.- Additive Schwarz Preconditioners.- Max-norm Estimates.- Adaptive Meshes.- Variational Crimes.- Applications to Planar Elasticity.- Mixed Methods.- Iterative Techniques for Mixed Methods.- Applications of Operator-Interpolation Theory.- References.- Index.

7,158 citations

Book
20 Dec 1990
TL;DR: In this article, a representation of stochastic processes and response statistics are represented by finite element method and response representation, respectively, and numerical examples are provided for each of them.
Abstract: Representation of stochastic processes stochastic finite element method - response representation stochastic finite element method - response statistics numerical examples.

5,495 citations