scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fused Heteroaromatic Organic Compounds for High‐Power Electrodes of Rechargeable Lithium Batteries

Yanliang Liang1, Peng Zhang1, Siqi Yang1, Zhanliang Tao1, Jun Chen1 
01 May 2013-Advanced Energy Materials (John Wiley & Sons, Ltd)-Vol. 3, Iss: 5, pp 600-605
TL;DR: In this paper, a molecular-level engineering strategy towards high-power organic electrode materials with multi-electron reactions was proposed for rechargeable lithium batteries, which showed that the judicious incorporation of heteroaromatics improves the cell performance in terms of specific gravimetric capacity, working potential, rate capability, and cyclability.
Abstract: Organic redox compounds are emerging electrode materials for rechargeable lithium batteries. However, their electrically insulating nature plagues efficient charge transport within the electroactive bulk. Alternative to the popular solution of elaborating nanocomposite materials, herein we report on a molecular-level engineering strategy towards high-power organic electrode materials with multi-electron reactions. Systematic comparisons of anthraquinone analogues incorporating fused heteroaromatic structures as cathode materials in rechargeable lithium batteries reveal that the judicious incorporation of heteroaromatics improves the cell performance in terms of specific gravimetric capacity, working potential, rate capability, and cyclability. Combination studies with morphological observation, electrochemical impedance characterization, and theoretical modeling provide insight into the advantage of heteroaromatic building blocks. In particular, benzofuro[5,6-b]furan-4,8-dione (BFFD) bearing furan moeities shows a reversible capacity of 181 mAh g−1 when charged/discharged at 100C, corresponding to a power density of 29.8 kW kg−1. These results have pointed to a general design route of high-rate organic electrode materials by rational functionalization of redox compounds with appropriate heteroaromatic units as versatile structural tools.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a comparative overview of the major developments in the area of positive and negative electrode materials in both Li-ion and Na-ion batteries in the past decade is provided.
Abstract: We discuss the similarities and dissimilarities of sodium- and lithium-ion batteries in terms of negative and positive electrodes. Compared to the comprehensive body of work on lithium-ion batteries, research on sodium-ion batteries is still at the germination stage. Since both sodium and lithium are alkali metals, they share similar chemical properties including ionicity, electronegativity and electrochemical reactivity. They accordingly have comparable synthetic protocols and electrochemical performances, which indicates that sodium-ion batteries can be successfully developed based on previously applied approaches or methods in the lithium counterpart. The electrode materials in Li-ion batteries provide the best library for research on Na-ion batteries because many Na-ion insertion hosts have their roots in Li-ion insertion hosts. However, the larger size and different bonding characteristics of sodium ions influence the thermodynamic and/or kinetic properties of sodium-ion batteries, which leads to unexpected behaviour in electrochemical performance and reaction mechanism, compared to lithium-ion batteries. This perspective provides a comparative overview of the major developments in the area of positive and negative electrode materials in both Li-ion and Na-ion batteries in the past decade. Highlighted are concepts in solid state chemistry and electrochemistry that have provided new opportunities for tailored design that can be extended to many different electrode materials for sodium-ion batteries.

713 citations

Journal ArticleDOI
Yong Lu1, Jun Chen1
01 Mar 2020
TL;DR: In this paper, the authors provide an overview of the history and redox of organic electrode materials and then evaluate the prospects and remaining challenges of organic electrode materials for practical lithium batteries.
Abstract: Organic materials have attracted much attention for their utility as lithium-battery electrodes because their tunable structures can be sustainably prepared from abundant precursors in an environmentally friendly manner. Most research into organic electrodes has focused on the material level instead of evaluating performance in practical batteries. This Review addresses this by first providing an overview of the history and redox of organic electrode materials and then evaluating the prospects and remaining challenges of organic electrode materials for practical lithium batteries. Our evaluations are made according to energy density, power density, cycle life, gravimetric density, electronic conductivity and other relevant parameters, such as energy efficiency, cost and resource availability. We posit that research in this field must focus more on the intrinsic electronic conductivity and density of organic electrode materials, after which a comprehensive optimization of full batteries should be performed under practically relevant conditions. We hope to stimulate high-quality applied research that might see the future commercialization of organic electrode materials. Organic materials can serve as sustainable electrodes in lithium batteries. This Review describes the desirable characteristics of organic electrodes and the corresponding batteries and how we should evaluate them in terms of performance, cost and sustainability.

595 citations

Journal ArticleDOI
Yong Lu1, Qiu Zhang1, Lin Li1, Zhiqiang Niu1, Jun Chen1 
13 Dec 2018-Chem
TL;DR: In this paper, the authors present the working principles and fundamental properties of different types of organic electrode materials, including conductive polymers, organosulfur compounds, organic radicals, carbonyl compounds, and other emerging materials.

431 citations


Cites background or methods from "Fused Heteroaromatic Organic Compou..."

  • ...Reprinted with permission from Liang et al.38 Copyright 2013 Wiley-VCH Verlag GmbH & Co. KGaA....

    [...]

  • ..., –NH2, –CH3, –OCH3, –OLi, and –ONa) is the common way to tune the working potentials of organic materials, since these groups can adjust the energy level of lowest unoccupied molecular orbital (LUMO).(38) Low LUMO energy level means high electron affinity, resulting in high working potential....

    [...]

  • ...For instance, by introducing electron-withdrawing atoms (S, O, and N) to 9,10-anthraquinone (AQ), our group designed three organic molecules, benzo[1,2-b:4,5-b0]dithiophene-4,8-dione (BDTD), benzofuro[5,6-b]furan-4,8-dione (BFFD), and pyrido[3,4-g]isoquinoline-5,10-dione (PID; Figure 3A).(38) As shown in Figures 3B and 3C, the first reduction potentials of BDTD (2....

    [...]

  • ...Reprinted with permission from Liang et al.(38) Copyright 2013 Wiley-VCH Verlag GmbH & Co....

    [...]

Journal ArticleDOI
TL;DR: This review provides a comprehensive overview of all reported cell configurations that involve electroactive organic compounds working either in the solid state or in solution for aqueous or nonaqueous electrolytes and highlights the most promising systems based on such various chemistries.
Abstract: As the world moves toward electromobility and a concomitant decarbonization of its electrical supply, modern society is also entering a so-called fourth industrial revolution marked by a boom of electronic devices and digital technologies. Consequently, battery demand has exploded along with the need for ores and metals to fabricate them. Starting from such a critical analysis and integrating robust structural data, this review aims at pointing out there is room to promote organic-based electrochemical energy storage. Combined with recycling solutions, redox-active organic species could decrease the pressure on inorganic compounds and offer valid options in terms of environmental footprint and possible disruptive chemistries to meet the energy storage needs of both today and tomorrow. We review state-of-the-art developments in organic batteries, current challenges, and prospects, and we discuss the fundamental principles that govern the reversible chemistry of organic structures. We provide a comprehensive overview of all reported cell configurations that involve electroactive organic compounds working either in the solid state or in solution for aqueous or nonaqueous electrolytes. These configurations include alkali (Li/Na/K) and multivalent (Mg, Zn)-based electrolytes for conventional "sealed" batteries and redox-flow systems. We also highlight the most promising systems based on such various chemistries relying on appropriate metrics such as operation voltage, specific capacity, specific energy, or cycle life to assess the performances of electrodes.

408 citations

Journal ArticleDOI
TL;DR: In this paper, a facile synthesis of π-conjugated quinoxaline-based heteroaromatic molecules (3Q) by condensation of cyclic carbonyl molecules with o-phenylenediamine was reported.
Abstract: Even though organic molecules with well-designed functional groups can be programmed to have high electron density per unit mass, their poor electrical conductivity and low cycle stability limit their applications in batteries. Here we report a facile synthesis of π-conjugated quinoxaline-based heteroaromatic molecules (3Q) by condensation of cyclic carbonyl molecules with o-phenylenediamine. 3Q features a number of electron-deficient pyrazine sites, where multiple redox reactions take place. When hybridized with graphene and coupled with an ether-based electrolyte, an organic cathode based on 3Q molecules displays a discharge capacity of 395 mAh g−1 at 400 mA g−1 (1C) in the voltage range of 1.2–3.9 V and a nearly 70% capacity retention after 10,000 cycles at 8 A g−1. It also exhibits a capacity of 222 mAh g−1 at 20C, which corresponds to 60% of the initial specific capacity. Our results offer evidence that heteroaromatic molecules with multiple redox sites are promising in developing high-energy-density, long-cycle-life organic rechargeable batteries. Organic compounds can be used as electrode materials for Li-ion batteries, but problems such as facile dissolution and low electrical conductivity hinder their application. Here the authors report π-conjugated quinoxaline-based heteroaromatic molecules with multiple redox sites to tackle the problems.

400 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
24 Jun 2011-Science
TL;DR: This work synthesized a porous carbon with a Brunauer-Emmett-Teller surface area, a high electrical conductivity, and a low oxygen and hydrogen content that has high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes.
Abstract: Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp 2 -bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

5,486 citations

Journal ArticleDOI
TL;DR: On the eve of commercialization of organic solar cells, this review provides an overview over efficiencies attained with small molecules/oligomers in OSCs and reflects materials and device concepts developed over the last decade.
Abstract: This article is written from an organic chemist's point of view and provides an up-to-date review about organic solar cells based on small molecules or oligomers as absorbers and in detail deals with devices that incorporate planar-heterojunctions (PHJ) and bulk heterojunctions (BHJ) between a donor (p-type semiconductor) and an acceptor (n-type semiconductor) material. The article pays particular attention to the design and development of molecular materials and their performance in corresponding devices. In recent years, a substantial amount of both, academic and industrial research, has been directed towards organic solar cells, in an effort to develop new materials and to improve their tunability, processability, power conversion efficiency, and stability. On the eve of commercialization of organic solar cells, this review provides an overview over efficiencies attained with small molecules/oligomers in OSCs and reflects materials and device concepts developed over the last decade. Approaches to enhancing the efficiency of organic solar cells are analyzed.

1,649 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized thirty years' research efforts in the field of organic compounds for rechargeable lithium batteries and compared the cell performances of these materials, providing a comprehensive overview of the area, and straightforwardly revealing the advantages/disadvantages of each class of materials.
Abstract: Organic compounds offer new possibilities for high energy/power density, cost-effective, environmentally friendly, and functional rechargeable lithium batteries. For a long time, they have not constituted an important class of electrode materials, partly because of the large success and rapid development of inorganic intercalation compounds. In recent years, however, exciting progress has been made, bringing organic electrodes to the attention of the energy storage community. Herein thirty years' research efforts in the field of organic compounds for rechargeable lithium batteries are summarized. The working principles, development history, and design strategies of these materials, including organosulfur compounds, organic free radical compounds, organic carbonyl compounds, conducting polymers, non-conjugated redox polymers, and layered organic compounds are presented. The cell performances of these materials are compared, providing a comprehensive overview of the area, and straightforwardly revealing the advantages/disadvantages of each class of materials.

1,096 citations