scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Future Optical Networks

01 Dec 2006-Journal of Lightwave Technology (Institute of Electrical and Electronics Engineers (IEEE))-Vol. 24, Iss: 12, pp 4684-4696
TL;DR: In this article, the authors present views on the future of optical networking and discuss the drivers pushing for a new and pervasive network, which is based on photonics and can satisfy the needs of a broadening base of residential, business and scientific users.
Abstract: This paper presents views on the future of optical networking. A historical look at the emergence of optical networking is first taken, followed by a discussion on the drivers pushing for a new and pervasive network, which is based on photonics and can satisfy the needs of a broadening base of residential, business, and scientific users. Regional plans and targets for optical networking are reviewed to understand which current approaches are judged important. Today, two thrusts are driving separate optical network infrastructure models, namely 1) the need by nations to provide a ubiquitous network infrastructure to support all the future services and telecommunication needs of residential and business users and 2) increasing demands by the scientific community for networks to support their requirements with respect to large-scale data transport and processing. This paper discusses these network models together with the key enabling technologies currently being considered for future implementation, including optical circuit, burst and packet switching, and optical code-division multiplexing. Critical subsystem functionalities are also reviewed. The discussion considers how these separate models might eventually merge to form a global optical network infrastructure
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a vision for grapheme-based integrated photonics and present a roadmap of the technological requirements to meet the demands of the datacom and telecom markets.
Abstract: Graphene is an ideal material for optoelectronic applications. Its photonic properties give several advantages and complementarities over Si photonics. For example, graphene enables both electro-absorption and electro-refraction modulation with an electro-optical index change exceeding 10$^{-3}$. It can be used for optical add-drop multiplexing with voltage control, eliminating the current dissipation used for the thermal detuning of microresonators, and for thermoelectric-based ultrafast optical detectors that generate a voltage without transimpedance amplifiers. Here, we present our vision for grapheme-based integrated photonics. We review graphene-based transceivers and compare them with existing technologies. Strategies for improving power consumption, manufacturability and wafer-scale integration are addressed. We outline a roadmap of the technological requirements to meet the demands of the datacom and telecom markets. We show that graphene based integrated photonics could enable ultrahigh spatial bandwidth density , low power consumption for board connectivity and connectivity between data centres, access networks and metropolitan, core, regional and long-haul optical communications.

223 citations

Journal ArticleDOI
TL;DR: The switch fabric is composed of 56 2 × 2 silicon Mach-Zehnder interferometers, with each integrated with a pair of TiN resistive micro-heaters and a p-i-n diode, and the switching functionality is verified by transmission of 20 Gb/s on-off keying and 50 GB/s quadrature phase-shift keying optical signals.
Abstract: We experimentally demonstrate a 16 × 16 non-blocking optical switch fabric with a footprint of 10.7 × 4.4 mm2. The switch fabric is composed of 56 2 × 2 silicon Mach-Zehnder interferometers (MZIs), with each integrated with a pair of TiN resistive micro-heaters and a p-i-n diode. The average on-chip insertion loss at 1560 nm wavelength is ~6.7 dB and ~14 dB for the "all-cross" and "all-bar" states, respectively, with a loss variation of ± 1 dB over all routing paths. The measured rise/fall time of the switch upon electrical tuning is 3.2/2.5 ns. The switching functionality is verified by transmission of 20 Gb/s on-off keying (OOK) and 50 Gb/s quadrature phase-shift keying (QPSK) optical signals.

184 citations

Journal ArticleDOI
TL;DR: It is shown that graphene-based integrated photonics could enable ultrahigh spatial bandwidth density, low power consumption for board connectivity and connectivity between data centres, access networks and metropolitan, core, regional and long-haul optical communications.
Abstract: Graphene is an ideal material for optoelectronic applications. Its photonic properties give several advantages and complementarities over Si photonics. For example, graphene enables both electro-absorption and electro-refraction modulation with an electro-optical index change exceeding 10−3. It can be used for optical add–drop multiplexing with voltage control, eliminating the current dissipation used for the thermal detuning of microresonators, and for thermoelectric-based ultrafast optical detectors that generate a voltage without transimpedance amplifiers. Here, we present our vision for graphene-based integrated photonics. We review graphene-based transceivers and compare them with existing technologies. Strategies for improving power consumption, manufacturability and wafer-scale integration are addressed. We outline a roadmap of the technological requirements to meet the demands of the datacom and telecom markets. We show that graphene-based integrated photonics could enable ultrahigh spatial bandwidth density, low power consumption for board connectivity and connectivity between data centres, access networks and metropolitan, core, regional and long-haul optical communications.

164 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented an ultra-broadband wavelength conversion in silicon photonic waveguides at a data rate of 40 Gb/s using a continuous-wave C-band pump.
Abstract: We present ultra-broadband wavelength conversion in silicon photonic waveguides at a data rate of 40 Gb/s. The dispersion-engineered device demonstrates a conversion bandwidth spanning the entire S-, C-, and L-bands of the ITU grid. Using a continuous-wave C-band pump, an input signal of wavelength 1513.7 nm is up-converted across nearly 50 nm at a data rate of 40 Gb/s, and bit-error-rate measurements are performed on the converted signal.

122 citations


Additional excerpts

  • ...conversions [10]....

    [...]

Journal ArticleDOI
TL;DR: The contention resolution and avoidance schemes proposed for bufferless OPS networks are surveyed and the Quality of Service (QoS) issue in a QoS-capable bufferlessOPS network is reviewed.
Abstract: Optical Packet Switching (OPS) is the promising switching technique to utilize the huge bandwidth offered by all-optical networks using the DWDM (Dense Wavelength Division Multiplexing) technology. However, optical packet contention is the major problem in an OPS network. Resolution and avoidance are two schemes to deal with the contention problem. A resolution scheme resolves collisions, while an avoidance scheme tries to reduce the number of potential collision events. Many OPS architectures rely on optical buffers to resolve contention. Unfortunately, optical buffering technology is still immature as it relies on bulky optical fiber delay lines. Furthermore, it requires a complex control. Therefore, a bufferless OPS network could still be the most straightforward implementation in the near future. In this article, we survey the contention resolution and avoidance schemes proposed for bufferless OPS networks. We also review the resolution and avoidance schemes that can handle the Quality of Service (QoS) issue in a QoS-capable bufferless OPS network.

95 citations


Cites background or methods from "Future Optical Networks"

  • ...Due to real time constraints, the feedback-based contention avoidance technique may not be suitable in optical networks [ 64 ]....

    [...]

  • ...One can find the following surveys in the area of all-optical packet-switched networks: 1) Optical networking mechanisms [5, 6, 7, 64 ]; 2) OPS architectures [2, 3, 8, 9, 10]; 3) Enabling technologies for OPS [10]; 4) Comparison of OPS and OBS (Optical Burst Switching) techniques [11, 12]; 5) Study of three common contention resolution schemes (i.e., deflection routing, optical buffering, and wavelength conversion) and their combinations ......

    [...]

  • ...An OPS network is not only scalable but it can also obtain higher channel utilization than optical circuit-switched networks due to its capability to provide the finest granularity [4, 64 ]....

    [...]

References
More filters
Journal Article
TL;DR: The general concept of OBS protocols and in particular, those based on Just-Enough-Time (JET), is described, along with the applicability ofOBS protocols to IP over WDM, and the performance of JET-based OBS Protocols is evaluated.
Abstract: To support bursty traffic on the Internet (and especially WWW) efficiently, optical burst switching (OBS) is proposed as a way to streamline both protocols and hardware in building the future generation Optical Internet. By leveraging the attractive properties of optical communications and at the same time, taking into account its limitations, OBS combines the best of optical circuit-switching and packet/cell switching. In this paper, the general concept of OBS protocols and in particular, those based on Just-Enough-Time (JET), is described, along with the applicability of OBS protocols to IP over WDM. Specific issues such as the use of fiber delay-lines (FDLs) for accommodating processing delay and/or resolving conflicts are also discussed. In addition, the performance of JET-based OBS protocols which use an offset time along with delayed reservation to achieve efficient utilization of both bandwidth and FDLs as well as to support priority-based routing is evaluated.

1,997 citations

Journal ArticleDOI
17 Nov 2005-Nature
TL;DR: High-speed long-distance communication based on chaos synchronization over a commercial fibre-optic channel is demonstrated, showing that information can be transmitted at high bit rates using deterministic chaos in a manner that is robust to perturbations and channel disturbances unavoidable under real-world conditions.
Abstract: Chaos is good, if you are looking to send encrypted information across a broadband optical network. The idea that the transmission of light-based signals embedded in chaos can provide privacy in data transmission has been demonstrated over short distances in the laboratory. Now it has been shown to work for real, across a commercial fibre-optic channel in the metropolitan area network of Athens, Greece. The results show that the technology is robust to perturbations and channel disturbances unavoidable under real-world conditions. Chaotic signals have been proposed as broadband information carriers with the potential of providing a high level of robustness and privacy in data transmission1,2. Laboratory demonstrations of chaos-based optical communications have already shown the potential of this technology3,4,5, but a field experiment using commercial optical networks has not been undertaken so far. Here we demonstrate high-speed long-distance communication based on chaos synchronization over a commercial fibre-optic channel. An optical carrier wave generated by a chaotic laser is used to encode a message for transmission over 120 km of optical fibre in the metropolitan area network of Athens, Greece. The message is decoded using an appropriate second laser which, by synchronizing with the chaotic carrier, allows for the separation of the carrier and the message. Transmission rates in the gigabit per second range are achieved, with corresponding bit-error rates below 10-7. The system uses matched pairs of semiconductor lasers as chaotic emitters and receivers, and off-the-shelf fibre-optic telecommunication components. Our results show that information can be transmitted at high bit rates using deterministic chaos in a manner that is robust to perturbations and channel disturbances unavoidable under real-world conditions.

1,267 citations


"Future Optical Networks" refers background in this paper

  • ...An experiment over a commercially installed fiber (2.5 Gb/s) showed the possibility of recovering chaotic transmission after 120 km [ 51 ]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors reported a quantum key distribution over a standard telecom fiber exceeding 100 km in length with a quantum bit error ratio of 8.9% for a 122 km link, allowing a secure shared key to be formed after error correction and privacy amplification.
Abstract: We report a demonstration of quantum key distribution over a standard telecom fiber exceeding 100 km in length. Through careful optimization of the interferometer and single photon detector, we achieve a quantum bit error ratio of 8.9% for a 122 km link, allowing a secure shared key to be formed after error correction and privacy amplification. Key formation rates of up to 1.9 kbit/s are achieved depending upon fiber length. We discuss the factors limiting the maximum fiber length in quantum cryptography.

628 citations

Journal ArticleDOI
TL;DR: In this paper, the progress from simple gates using cross-gain modulation and four-wave mixing to the integrated interferometric gates using a cross-phase modulation is reviewed, which is very efficient for high-speed signal processing and open up interesting new areas, such as all-optical regeneration and high-time logic functions.
Abstract: Semiconductor optical amplifiers are useful building blocks for all-optical gates as wavelength converters and OTDM demultiplexers. The paper reviews the progress from simple gates using cross-gain modulation and four-wave mixing to the integrated interferometric gates using cross-phase modulation. These gates are very efficient for high-speed signal processing and open up interesting new areas, such as all-optical regeneration and high-speed all-optical logic functions.

520 citations


"Future Optical Networks" refers background in this paper

  • ...Many of the key functional subsystems needed for this future flexible network have already been described with experimental demonstrations (e.g., all-optical regeneration at 40 Gb/s has been widely reported [ 40 ], as has wavelength conversion, fast tunable lasers, tunable dispersion compensators, MEMS-based switch fabrics, etc.)....

    [...]

Journal ArticleDOI
TL;DR: An overview of Infinera's current generation of 100 Gb/s transmitter and receiver PICs as well as results from the next-generation 500 G b/s PM-QPSK P ICs are presented.
Abstract: 100-Gb/s dense wavelength division multiplexed (DWDM) transmitter and receiver photonic integrated circuits (PICs) are demonstrated. The transmitter is realized through the integration of over 50 discrete functions onto a single monolithic InP chip. The resultant DWDM PICs are capable of simultaneously transmitting and receiving ten wavelengths at 10 Gb/s on a DWDM wavelength grid. Optical system performance results across a representative DWDM long-haul link are presented for a next-generation optical transport system using these large-scale PICs. The large-scale PIC enables significant reductions in cost, packaging complexity, size, fiber coupling, and power consumption.

381 citations