scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fuzzy logic in control systems: fuzzy logic controller. II

01 Apr 1990-Vol. 20, Iss: 2, pp 419-435
TL;DR: The basic aspects of the FLC (fuzzy logic controller) decision-making logic are examined and several issues, including the definitions of a fuzzy implication, compositional operators, the interpretations of the sentence connectives 'and' and 'also', and fuzzy inference mechanisms, are investigated.
Abstract: For pt.I see ibid., vol.20, no.2, p.404-18, 1990. The basic aspects of the FLC (fuzzy logic controller) decision-making logic are examined. Several issues, including the definitions of a fuzzy implication, compositional operators, the interpretations of the sentence connectives 'and' and 'also', and fuzzy inference mechanisms, are investigated. Defuzzification strategies, are discussed. Some of the representative applications of the FLC, from laboratory level to industrial process control, are briefly reported. Some unsolved problems are described, and further challenges in this field are discussed. >
Citations
More filters
Journal ArticleDOI
01 May 1993
TL;DR: The architecture and learning procedure underlying ANFIS (adaptive-network-based fuzzy inference system) is presented, which is a fuzzy inference System implemented in the framework of adaptive networks.
Abstract: The architecture and learning procedure underlying ANFIS (adaptive-network-based fuzzy inference system) is presented, which is a fuzzy inference system implemented in the framework of adaptive networks. By using a hybrid learning procedure, the proposed ANFIS can construct an input-output mapping based on both human knowledge (in the form of fuzzy if-then rules) and stipulated input-output data pairs. In the simulation, the ANFIS architecture is employed to model nonlinear functions, identify nonlinear components on-line in a control system, and predict a chaotic time series, all yielding remarkable results. Comparisons with artificial neural networks and earlier work on fuzzy modeling are listed and discussed. Other extensions of the proposed ANFIS and promising applications to automatic control and signal processing are also suggested. >

15,085 citations

Book
01 Dec 1994
TL;DR: This chapter discusses Fuzzy Systems Simulation, specifically the development of Membership Functions and the Extension Principle, and some of the methods used to derive these functions.
Abstract: About the Author. Preface to the Third Edition. 1 Introduction. The Case for Imprecision. A Historical Perspective. The Utility of Fuzzy Systems. Limitations of Fuzzy Systems. The Illusion: Ignoring Uncertainty and Accuracy. Uncertainty and Information. The Unknown. Fuzzy Sets and Membership. Chance Versus Fuzziness. Sets as Points in Hypercubes. Summary. References. Problems. 2 Classical Sets and Fuzzy Sets. Classical Sets. Operations on Classical Sets. Properties of Classical (Crisp) Sets. Mapping of Classical Sets to Functions. Fuzzy Sets. Fuzzy Set Operations. Properties of Fuzzy Sets. Alternative Fuzzy Set Operations. Summary. References. Problems. 3 Classical Relations and Fuzzy Relations. Cartesian Product. Crisp Relations. Cardinality of Crisp Relations. Operations on Crisp Relations. Properties of Crisp Relations. Composition. Fuzzy Relations. Cardinality of Fuzzy Relations. Operations on Fuzzy Relations. Properties of Fuzzy Relations. Fuzzy Cartesian Product and Composition. Tolerance and Equivalence Relations. Crisp Equivalence Relation. Crisp Tolerance Relation. Fuzzy Tolerance and Equivalence Relations. Value Assignments. Cosine Amplitude. Max Min Method. Other Similarity Methods. Other Forms of the Composition Operation. Summary. References. Problems. 4 Properties of Membership Functions, Fuzzification, and Defuzzification. Features of the Membership Function. Various Forms. Fuzzification. Defuzzification to Crisp Sets. -Cuts for Fuzzy Relations. Defuzzification to Scalars. Summary. References. Problems. 5 Logic and Fuzzy Systems. Part I Logic. Classical Logic. Proof. Fuzzy Logic. Approximate Reasoning. Other Forms of the Implication Operation. Part II Fuzzy Systems. Natural Language. Linguistic Hedges. Fuzzy (Rule-Based) Systems. Graphical Techniques of Inference. Summary. References. Problems. 6 Development of Membership Functions. Membership Value Assignments. Intuition. Inference. Rank Ordering. Neural Networks. Genetic Algorithms. Inductive Reasoning. Summary. References. Problems. 7 Automated Methods for Fuzzy Systems. Definitions. Batch Least Squares Algorithm. Recursive Least Squares Algorithm. Gradient Method. Clustering Method. Learning From Examples. Modified Learning From Examples. Summary. References. Problems. 8 Fuzzy Systems Simulation. Fuzzy Relational Equations. Nonlinear Simulation Using Fuzzy Systems. Fuzzy Associative Memories (FAMS). Summary. References. Problems. 9 Decision Making with Fuzzy Information. Fuzzy Synthetic Evaluation. Fuzzy Ordering. Nontransitive Ranking. Preference and Consensus. Multiobjective Decision Making. Fuzzy Bayesian Decision Method. Decision Making Under Fuzzy States and Fuzzy Actions. Summary. References. Problems. 10 Fuzzy Classification. Classification by Equivalence Relations. Crisp Relations. Fuzzy Relations. Cluster Analysis. Cluster Validity. c-Means Clustering. Hard c-Means (HCM). Fuzzy c-Means (FCM). Fuzzy c-Means Algorithm. Classification Metric. Hardening the Fuzzy c-Partition. Similarity Relations from Clustering. Summary. References. Problems. 11 Fuzzy Pattern Recognition. Feature Analysis. Partitions of the Feature Space. Single-Sample Identification. Multifeature Pattern Recognition. Image Processing. Summary. References. Problems. 12 Fuzzy Arithmetic and the Extension Principle. Extension Principle. Crisp Functions, Mapping, and Relations. Functions of Fuzzy Sets Extension Principle. Fuzzy Transform (Mapping). Practical Considerations. Fuzzy Arithmetic. Interval Analysis in Arithmetic. Approximate Methods of Extension. Vertex Method. DSW Algorithm. Restricted DSW Algorithm. Comparisons. Summary. References. Problems. 13 Fuzzy Control Systems. Control System Design Problem. Control (Decision) Surface. Assumptions in a Fuzzy Control System Design. Simple Fuzzy Logic Controllers. Examples of Fuzzy Control System Design. Aircraft Landing Control Problem. Fuzzy Engineering Process Control. Classical Feedback Control. Fuzzy Control. Fuzzy Statistical Process Control. Measurement Data Traditional SPC. Attribute Data Traditional SPC. Industrial Applications. Summary. References. Problems. 14 Miscellaneous Topics. Fuzzy Optimization. One-Dimensional Optimization. Fuzzy Cognitive Mapping. Concept Variables and Causal Relations. Fuzzy Cognitive Maps. Agent-Based Models. Summary. References. Problems. 15 Monotone Measures: Belief, Plausibility, Probability, and Possibility. Monotone Measures. Belief and Plausibility. Evidence Theory. Probability Measures. Possibility and Necessity Measures. Possibility Distributions as Fuzzy Sets. Possibility Distributions Derived from Empirical Intervals. Deriving Possibility Distributions from Overlapping Intervals. Redistributing Weight from Nonconsonant to Consonant Intervals. Comparison of Possibility Theory and Probability Theory. Summary. References. Problems. Index.

4,958 citations

Journal Article
TL;DR: The fuzzy logic controller (FLC) based on fuzzy logic provides a means of converting a linguistic control strategy based on expert knowledge into an automatic control strategy.
Abstract: During the past several years, fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory. Fuzzy control is based on fuzzy logic. The fuzzy logic controller (FLC) based on fuzzy logic provides a means of converting a linguistic control strategy based on expert knowledge into an automatic control strategy. A survey of the FLC is presented; a general methodology for constructing an FLC and assessing its performance is described; and problems that need further research are pointed out

4,830 citations

Journal ArticleDOI
TL;DR: M Modes of information granulation (IG) in which the granules are crisp (c-granular) play important roles in a wide variety of methods, approaches and techniques, but this does not reflect the fact that in almost all of human reasoning and concept formation thegranules are fuzzy (f- Granular).

2,624 citations

Journal ArticleDOI
TL;DR: Using the Stone-Weierstrass theorem, it is proved that linear combinations of the fuzzy basis functions are capable of uniformly approximating any real continuous function on a compact set to arbitrary accuracy.
Abstract: Fuzzy systems are represented as series expansions of fuzzy basis functions which are algebraic superpositions of fuzzy membership functions. Using the Stone-Weierstrass theorem, it is proved that linear combinations of the fuzzy basis functions are capable of uniformly approximating any real continuous function on a compact set to arbitrary accuracy. Based on the fuzzy basis function representations, an orthogonal least-squares (OLS) learning algorithm is developed for designing fuzzy systems based on given input-output pairs; then, the OLS algorithm is used to select significant fuzzy basis functions which are used to construct the final fuzzy system. The fuzzy basis function expansion is used to approximate a controller for the nonlinear ball and beam system, and the simulation results show that the control performance is improved by incorporating some common-sense fuzzy control rules. >

2,575 citations

References
More filters
Journal ArticleDOI
01 Jan 1985
TL;DR: A mathematical tool to build a fuzzy model of a system where fuzzy implications and reasoning are used is presented and two applications of the method to industrial processes are discussed: a water cleaning process and a converter in a steel-making process.
Abstract: A mathematical tool to build a fuzzy model of a system where fuzzy implications and reasoning are used is presented. The premise of an implication is the description of fuzzy subspace of inputs and its consequence is a linear input-output relation. The method of identification of a system using its input-output data is then shown. Two applications of the method to industrial processes are also discussed: a water cleaning process and a converter in a steel-making process.

18,803 citations

Journal ArticleDOI
TL;DR: Much of what constitutes the core of scientific knowledge may be regarded as a reservoir of concepts and techniques which can be drawn upon to construct mathematical models of various types of systems and thereby yield quantitative information concerning their behavior.

12,530 citations

Journal ArticleDOI
01 Jan 1973
TL;DR: By relying on the use of linguistic variables and fuzzy algorithms, the approach provides an approximate and yet effective means of describing the behavior of systems which are too complex or too ill-defined to admit of precise mathematical analysis.
Abstract: The approach described in this paper represents a substantive departure from the conventional quantitative techniques of system analysis. It has three main distinguishing features: 1) use of so-called ``linguistic'' variables in place of or in addition to numerical variables; 2) characterization of simple relations between variables by fuzzy conditional statements; and 3) characterization of complex relations by fuzzy algorithms. A linguistic variable is defined as a variable whose values are sentences in a natural or artificial language. Thus, if tall, not tall, very tall, very very tall, etc. are values of height, then height is a linguistic variable. Fuzzy conditional statements are expressions of the form IF A THEN B, where A and B have fuzzy meaning, e.g., IF x is small THEN y is large, where small and large are viewed as labels of fuzzy sets. A fuzzy algorithm is an ordered sequence of instructions which may contain fuzzy assignment and conditional statements, e.g., x = very small, IF x is small THEN Y is large. The execution of such instructions is governed by the compositional rule of inference and the rule of the preponderant alternative. By relying on the use of linguistic variables and fuzzy algorithms, the approach provides an approximate and yet effective means of describing the behavior of systems which are too complex or too ill-defined to admit of precise mathematical analysis.

8,547 citations

Journal ArticleDOI
TL;DR: Fuzzy logic is used to convert heuristic control rules stated by a human operator into an automatic control strategy, and the control strategy set up linguistically proved to be far better than expected in its own right.
Abstract: This paper describes an experiment on the “linguistic” synthesis of a controller for a model industrial plant (a steam engine). Fuzzy logic is used to convert heuristic control rules stated by a human operator into an automatic control strategy. The experiment was initiated to investigate the possibility of human interaction with a learning controller. However, the control strategy set up linguistically proved to be far better than expected in its own right, and the basic experiment of linguistic control synthesis in a non-learning controller is reported here.

6,392 citations

Journal ArticleDOI
01 Dec 1974
TL;DR: In this article, the authors describe a scheme in which a fuzzy algorithm is used to control plant, in this case, a laboratory-built steam engine, implemented as an interpreter of a set of rules expressed as fuzzy conditional statements.
Abstract: The paper describes a scheme in which a fuzzy algorithm is used to control plant, in this case, a laboratory-built steam engine. The algorithm is implemented as an interpreter of a set of rules expressed as fuzzy conditional statements. This implementation on a digital computer is used online, to control the plant. The merit of such a controller is discussed in the light of the results obtained.

3,916 citations