scispace - formally typeset
Open accessJournal ArticleDOI: 10.3758/BF03193146

G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences

01 May 2007-Behavior Research Methods (Behav Res Methods)-Vol. 39, Iss: 2, pp 175-191
Abstract: G*Power (Erdfelder, Faul, & Buchner, 1996) was designed as a general stand-alone power analysis program for statistical tests commonly used in social and behavioral research. G*Power 3 is a major extension of, and improvement over, the previous versions. It runs on widely used computer platforms (i.e., Windows XP, Windows Vista, and Mac OS X 10.4) and covers many different statistical tests of thet, F, and χ2 test families. In addition, it includes power analyses forz tests and some exact tests. G*Power 3 provides improved effect size calculators and graphic options, supports both distribution-based and design-based input modes, and offers all types of power analyses in which users might be interested. Like its predecessors, G*Power 3 is free. more

Topics: Windows Vista (55%)

Open accessJournal ArticleDOI: 10.3758/BRM.41.4.1149
Abstract: G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling. more

Topics: Regression diagnostic (65%), Proper linear model (64%), Segmented regression (63%) more

14,933 Citations

Open accessJournal ArticleDOI: 10.1038/NRN3475
Abstract: A study with low statistical power has a reduced chance of detecting a true effect, but it is less well appreciated that low power also reduces the likelihood that a statistically significant result reflects a true effect. Here, we show that the average statistical power of studies in the neurosciences is very low. The consequences of this include overestimates of effect size and low reproducibility of results. There are also ethical dimensions to this problem, as unreliable research is inefficient and wasteful. Improving reproducibility in neuroscience is a key priority and requires attention to well-established but often ignored methodological principles. more

Topics: Reproducibility Project (50%)

4,720 Citations

Open accessJournal ArticleDOI: 10.1038/NATURE21029
26 Jan 2017-Nature
Abstract: This work was supported by grants from the National Institutes of Health (R01 AG048814, B.A.B.; RO1 DA15043, B.A.B.; P50 NS38377, V.L.D. and T.M.D.) Christopher and Dana Reeve Foundation (B.A.B.), the Novartis Institute for Biomedical Research (B.A.B.), Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (B.A.B.), the JPB Foundation (B.A.B., T.M.D.), the Cure Alzheimer’s Fund (B.A.B.), the Glenn Foundation (B.A.B.), the Esther B O’Keeffe Charitable Foundation (B.A.B.), the Maryland Stem Cell Research Fund (2013-MSCRFII-0105-00, V.L.D.; 2012-MSCRFII-0268-00, T.M.D.; 2013-MSCRFII-0105-00, T.M.D.; 2014-MSCRFF-0665, M.K.). S.A.L. was supported by a postdoctoral fellowship from the Australian National Health and Medical Research Council (GNT1052961), and the Glenn Foundation Glenn Award. L.E.C. was funded by a Merck Research Laboratories postdoctoral fellowship (administered by the Life Science Research Foundation). W.-S.C. was supported by a career transition grant from NEI (K99EY024690). C.J.B. was supported by a postdoctoral fellowship from Damon Runyon Cancer Research Foundation (DRG-2125-12). L.S. was supported by a postdoctoral fellowship from the German Research Foundation (DFG, SCHI 1330/1-1). more

2,721 Citations

MonographDOI: 10.1017/CBO9780511761676
Paul D. Ellis1Institutions (1)
01 Jul 2010-
Abstract: List of figures List of tables List of boxes Introduction Part I. Effect Sizes and the Interpretation of Results: 1. Introduction to effect sizes 2. Interpreting effects Part II. The Analysis of Statistical Power: 3. Power analysis and the detection of effects 4. The painful lessons of power research Part III. Meta-Analysis: 5. Drawing conclusions using meta-analysis 6. Minimizing bias in meta-analysis Last word: thirty recommendations for researchers Appendices: 1. Minimum sample sizes 2. Alternative methods for meta-analysis Bibliography Index. more

1,635 Citations

Journal ArticleDOI: 10.2307/2309491

1,275 Citations


Open accessBook
Jacob Cohen1Institutions (1)
01 Dec 1969-
Abstract: Contents: Prefaces. The Concepts of Power Analysis. The t-Test for Means. The Significance of a Product Moment rs (subscript s). Differences Between Correlation Coefficients. The Test That a Proportion is .50 and the Sign Test. Differences Between Proportions. Chi-Square Tests for Goodness of Fit and Contingency Tables. The Analysis of Variance and Covariance. Multiple Regression and Correlation Analysis. Set Correlation and Multivariate Methods. Some Issues in Power Analysis. Computational Procedures. more

Topics: Goodness of fit (61%), Contingency table (57%), Effect size (56%) more

103,911 Citations

Open accessBook
Joseph L. Fleiss1Institutions (1)
01 Jan 1981-
Abstract: Preface.Preface to the Second Edition.Preface to the First Edition.1. An Introduction to Applied Probability.2. Statistical Inference for a Single Proportion.3. Assessing Significance in a Fourfold Table.4. Determining Sample Sizes Needed to Detect a Difference Between Two Proportions.5. How to Randomize.6. Comparative Studies: Cross-Sectional, Naturalistic, or Multinomial Sampling.7. Comparative Studies: Prospective and Retrospective Sampling.8. Randomized Controlled Trials.9. The Comparison of Proportions from Several Independent Samples.10. Combining Evidence from Fourfold Tables.11. Logistic Regression.12. Poisson Regression.13. Analysis of Data from Matched Samples.14. Regression Models for Matched Samples.15. Analysis of Correlated Binary Data.16. Missing Data.17. Misclassification Errors: Effects, Control, and Adjustment.18. The Measurement of Interrater Agreement.19. The Standardization of Rates.Appendix A. Numerical Tables.Appendix B. The Basic Theory of Maximum Likelihood Estimation.Appendix C. Answers to Selected Problems.Author Index.Subject Index. more

16,098 Citations

Open accessBook
01 Jan 1982-
Abstract: I. INTRODUCTION. 1. Experimental Design. II. SINGLE FACTOR EXPERIMENTS. 2. Sources of Variability and Sums of Squares. 3. Variance Estimates and F Ratio. 4. Analytical Comparisons Among Means. 5. Analysis of Trend. 6. Simultaneous Comparisons. 7. The Linear Model and Its Assumptions. 8. Effect Size and Power. 9. Using Statistical Software. III. FACTORIAL EXPERIMENTS WITH TWO FACTORS. 10. Introduction to the Factorial Design. 11. The Principal Two-Factor Effects. 12. Main Effects and Simple Effects. 13. The Analysis of Interaction Components. IV. NONORTHOGONALITY AND THE GENERAL LINEAR MODEL. 14. General Linear Model. 15. The Analysis of Covariance. V. WITHIN-SUBJECT DESIGNS. 16. The Single-Factor Within-Subject Design. 17. Further Within-Subject Topics. 18. The Two-Factor Within-Subject Design. 19. The Mixed Design: Overall Analysis. 20. The Mixed Design: Analytical Analyses. VI. HIGHER FACTORIAL DESIGNS AND OTHER EXTENSIONS. 21. The Overall Three-Factor Design. 22. The Three-Way Analytical Analysis. 23. Within-Subject and Mixed Designs. 24. Random Factors and Generalization. 25. Nested Factors. 26. Higher-Order Designs. Appendix A: Statistical Tables. more

Topics: Main effect (65%), Fractional factorial design (63%), Linear model (54%) more

6,213 Citations

No. of citations received by the Paper in previous years