scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Ga doped Ni3S2 ultrathin nanosheet arrays supported on Ti3C2-MXene/Ni foam: An efficient and stable 3D electrocatalyst for oxygen evolution reaction

TL;DR: In this article, a Ga-doped Ni3S2 nanosheet arrays grown on Ti3C2-MXene/nickel foam have been synthesized by a successive hydrothermal and sulfidization process.
About: This article is published in International Journal of Hydrogen Energy.The article was published on 2021-11-23 and is currently open access. It has received 16 citations till now. The article focuses on the topics: Nanosheet & Overpotential.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , a two-dimensional NiCoFe layered double hydroxide (LDH)/MoO3 stacked heterostructure with enriched active sites and optimal electronic structure was fabricated via an electrostatic-driven self-assembly process.

12 citations

Journal ArticleDOI
TL;DR: Due to their chemical and electrical characteristics, such as metallic conductivity, redox-activity in transition metals, high hydrophilicity, and adjustable surface properties, MXenes are emerging as important contributors to oxygen reduction as discussed by the authors .

9 citations

Journal ArticleDOI
TL;DR: In this paper , a series of novel nanocomposites comprising CeO2 nanorods decorated with CoSe2 nanoparticles were compared with conventional hydrothermal synthesis or a rapid electrodeposition process, and their structure, morphology, and electrochemical performance toward OER in alkaline solution were compared.

8 citations

Journal ArticleDOI
TL;DR: In this article , self-supported three-dimensional (3D) P-doped NiSe/2H-MoSe2 nanorod arrays are used for hydrogen evolution reaction (HER) for electrolysis of water.
Abstract: Developing non-noble metal-based electrocatalysts with better activity and stability for hydrogen evolution reaction (HER) is crucial for the electrolysis of water. Herein, self-supported three-dimensional (3D) P-doped NiSe/2H-MoSe2 nanorod arrays (denoted...

5 citations

References
More filters
Journal ArticleDOI
TL;DR: This article summarized the recent progress in understanding OER mechanisms, which include the conventional adsorbate evolution mechanism (AEM) and lattice-oxygen-mediated mechanism (LOM) from both theoretical and experimental aspects, and introduced strategies to reduce overpotential.
Abstract: Electricity-driven water splitting can facilitate the storage of electrical energy in the form of hydrogen gas. As a half-reaction of electricity-driven water splitting, the oxygen evolution reaction (OER) is the major bottleneck due to the sluggish kinetics of this four-electron transfer reaction. Developing low-cost and robust OER catalysts is critical to solving this efficiency problem in water splitting. The catalyst design has to be built based on the fundamental understanding of the OER mechanism and the origin of the reaction overpotential. In this article, we summarize the recent progress in understanding OER mechanisms, which include the conventional adsorbate evolution mechanism (AEM) and lattice-oxygen-mediated mechanism (LOM) from both theoretical and experimental aspects. We start with the discussion on the AEM and its linked scaling relations among various reaction intermediates. The strategies to reduce overpotential based on the AEM and its derived descriptors are then introduced. To further reduce the OER overpotential, it is necessary to break the scaling relation of HOO* and HO* intermediates in conventional AEM to go beyond the activity limitation of the volcano relationship. Strategies such as stabilization of HOO*, proton acceptor functionality, and switching the OER pathway to LOM are discussed. The remaining questions on the OER and related perspectives are also presented at the end.

1,107 citations

Journal ArticleDOI
Hongming Sun1, Zhenhua Yan1, Fangming Liu1, Wence Xu1, Fangyi Cheng1, Jun Chen1 
TL;DR: Focusing on self-supported electrodes, the latest advances in their structural design, controllable synthesis, mechanistic understanding, and strategies for performance enhancement are presented.
Abstract: Electrochemical water splitting is a promising technology for sustainable conversion, storage, and transport of hydrogen energy. Searching for earth-abundant hydrogen/oxygen evolution reaction (HER/OER) electrocatalysts with high activity and durability to replace noble-metal-based catalysts plays paramount importance in the scalable application of water electrolysis. A freestanding electrode architecture is highly attractive as compared to the conventional coated powdery form because of enhanced kinetics and stability. Herein, recent progress in developing transition-metal-based HER/OER electrocatalytic materials is reviewed with selected examples of chalcogenides, phosphides, carbides, nitrides, alloys, phosphates, oxides, hydroxides, and oxyhydroxides. Focusing on self-supported electrodes, the latest advances in their structural design, controllable synthesis, mechanistic understanding, and strategies for performance enhancement are presented. Remaining challenges and future perspectives for the further development of self-supported electrocatalysts are also discussed.

1,015 citations

Journal ArticleDOI
TL;DR: A Ni3S2 nanorods/Ni foam composite electrode is prepared as a high-performance catalyst for the oxygen evolution reaction (OER), which exhibits excellent OER activity with a small overpotential of ∼157 mV based on the onset of catalytic current as discussed by the authors.
Abstract: A Ni3S2 nanorods/Ni foam composite electrode is prepared as a high-performance catalyst for the oxygen evolution reaction (OER), which exhibits excellent OER activity with a small overpotential of ∼157 mV based on the onset of catalytic current.

904 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the fundamentals of the hydrogen evolution reaction/oxygen evolution reaction (HER/OER) and construct efficient electrocatalysts based on the structure-activity relationship.
Abstract: Alkaline water splitting is an attractive method for sustainable hydrogen production. Owing to the sluggish kinetics of alkaline water reduction and oxidation, it is crucial to understand the mechanism of the hydrogen evolution reaction/oxygen evolution reaction (HER/OER) and construct efficient electrocatalysts based on the structure–activity relationship. This review describes the fundamentals of the alkaline HER and OER, the design of noble and nonnoble HER electrocatalysts with low energy barriers, OER electrocatalysts based on binding energy, electronic structure, lattice oxygen, and surface reconstruction as well as the recent developments of bifunctional HER/OER electrocatalysts. Future perspectives towards alkaline water splitting electrocatalysts are also proposed.

874 citations

Journal ArticleDOI
TL;DR: In this article, a hierarchical MoS2-Ni3S2 heteronanorod supported by Ni foam was proposed for hydrogen evolution reaction (HER) and oxygen evolution reaction.
Abstract: Exploring noble-metal-free electrocatalysts with high efficiency for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) holds promise for advancing the production of H2 fuel through water splitting. Herein, one-pot synthesis was introduced for MoS2–Ni3S2 heteronanorods supported by Ni foam (MoS2–Ni3S2 HNRs/NF), in which the Ni3S2 nanorods were hierarchically integrated with MoS2 nanosheets. The hierarchical MoS2–Ni3S2 heteronanorods allow not only the good exposure of highly active heterointerfaces but also the facilitated charge transport along Ni3S2 nanorods anchored on conducting nickel foam, accomplishing the promoted kinetics and activity for HER, OER, and overall water splitting. The optimal MoS2–Ni3S2 HNRs/NF presents low overpotentials (η10) of 98 and 249 mV to reach a current density of 10 mA cm–2 in 1.0 M KOH for HER and OER, respectively. Assembled as an electrolyzer for overall water splitting, such heteronanorods show a quite low cell voltage of 1.50 V at 10 mA...

858 citations