scispace - formally typeset
Search or ask a question
Journal Article

Galvanic vestibular stimulation

01 Jan 1991-Chekhoslovatskaia fiziologiia (Cesk Fysiol)-Vol. 40, Iss: 1, pp 43-60
About: This article is published in Chekhoslovatskaia fiziologiia.The article was published on 1991-01-01 and is currently open access. It has received 30 citations till now. The article focuses on the topics: Galvanic vestibular stimulation.
Citations
More filters
Journal ArticleDOI
TL;DR: The findings suggest that the actual postural control system during quiet stance adopts a control strategy that relies notably on velocity information and that such a controller can modulate muscle activity in anticipatory manner without using a feed-forward mechanism.
Abstract: In literature, it has been suggested that the CNS anticipates spontaneous change in body position during quiet stance and continuously modulates ankle extensor muscle activity to compensate for the...

301 citations

Journal ArticleDOI
TL;DR: This review explores and integrates task-, muscle- and frequency-related differences in the vestibular system’s contribution to posture, and proposes that the human nervous system has adapted Vestibular signals to match the mechanical properties of the system that each group of muscles controls.
Abstract: The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwidth of vestibular input on neck muscles is much broader than appendicular muscles (up to a factor of 3). This result challenges the notion that vestibular reflexes only contribute to postural control across the behavioral and physiological frequency range of the vestibular organ (i.e., 0–20 Hz). In this review, we explore and integrate these task-, muscle- and frequency-related differences in the vestibular system’s contribution to posture, and propose that the human nervous system has adapted vestibular signals to match the mechanical properties of the system that each group of muscles controls.

194 citations


Cites background from "Galvanic vestibular stimulation"

  • ..., 2012), whereas others have argued that semicircular canals are also involved (Curthoys and Macdougall, 2012; Reynolds and Osler, 2012)....

    [...]

  • ...Some authors have suggested that only otolith responses are induced in humans (Cohen et al., 2012), whereas others have argued that semicircular canals are also involved (Curthoys and Macdougall, 2012; Reynolds and Osler, 2012)....

    [...]

Journal ArticleDOI
TL;DR: It is demonstrated that subjects can act as ”responders” to galvanic vestibular stimulation, and the finding that the coherency was highest for the 1- to 2-Hz stochastic vestibul stimulation signal may be due to the intrinsic dynamics of the quasi-static postural control system.
Abstract: Galvanic vestibular stimulation serves to modulate the continuous firing level of the peripheral vestibular afferents. It has been shown that the application of sinusoidally varying, bipolar galvanic currents to the vestibular system can lead to sinusoidally varying postural sway. Our objective was to test the hypothesis that stochastic galvanic vestibular stimulation can lead to coherent stochastic postural sway. Bipolar binaural stochastic galvanic vestibular stimulation was applied to nine healthy young subjects. Three different stochastic vestibular stimulation signals, each with a different frequency content (0–1 Hz, 1–2 Hz, and 0–2 Hz), were used. The stimulation level (range 0.4–1.5 mA, peak to peak) was determined on an individual basis. Twenty 60-s trials were conducted on each subject – 15 stimulation trials (5 trials with each stimulation signal) and 5 control (no stimulation) trials. During the trials, subjects stood in a relaxed, upright position with their head facing forward. Postural sway was evaluated by using a force platform to measure the displacements of the center of pressure (COP) under each subject’s feet. Cross-spectral measures were used to quantify the relationship between the applied stimulus and the resulting COP time series. We found significant coherency between the stochastic vestibular stimulation signal and the resulting mediolateral COP time series in the majority of trials in 8 of the 9 subjects tested. The coherency results for each stimulation signal were reproducible from trial to trial, and the highest degree of coherency was found for the 1- to 2-Hz stochastic vestibular stimulation signal. In general, for the nine subjects tested, we did not find consistent significant coherency between the stochastic vestibular stimulation signals and the anteroposterior COP time series. This work demonstrates that, in subjects who are facing forward, bipolar binaural stochastic galvanic stimulation of the vestibular system leads to coherent stochastic mediolateral postural sway, but it does not lead to coherent stochastic anteroposterior postural sway. Our finding that the coherency was highest for the 1- to 2-Hz stochastic vestibular stimulation signal may be due to the intrinsic dynamics of the quasi-static postural control system. In particular, it may result from the effects of the vestibular stimulus simply being superimposed upon the quiet-standing COP displacements. By utilizing stochastic stimulation signals, we ensured that the subjects could not predict a change in the vestibular stimulus. Thus, our findings indicate that subjects can act as ”responders” to galvanic vestibular stimulation.

104 citations


Cites background from "Galvanic vestibular stimulation"

  • ...…Nashner andWolfson 1974; Honjo et al. 1976; Magnusson et al. 1990a,1990b; Johansson and Magnusson 1991; Iles and Pisini1992; Britton et al. 1993; Fitzpatrick et al. 1994; Krizkovaand Hlavacka 1994; Hlavacka et al. 1995; Inglis et al. 1995;Johansson et al. 1995; Cass et al. 1996; Day et al. 1997)....

    [...]

Journal ArticleDOI
TL;DR: The vestibular system is the one sensory organ dedicated to gravity perception, which along with light and oxygen served as a motor of evolution.
Abstract: In the nineteenth century Pierre–Jean–Marie Flourens (1825) and Ernst Mach described the vestibular system and its peripheral organs while Robert Barany, rewarded by the Nobel prize in 1914, was the first to investigate vestibular disorders with caloric tests making surgical treatments of the vestibular organ possible. Recently, Graf and Klam (2006) have reminded us that this ancient sensory system appeared more than 500 million years ago. Logically its influence would most likely not be restricted to balance reflexes at the brainstem level; it must have also shaped our brain. The vestibular system is the one sensory organ dedicated to gravity perception, which along with light and oxygen served as a motor of evolution. In the 1950s the groups of Otto–Joachim Grusser in Germany, Wilder Penfield in Canada, and later the group of Alain Berthoz in France, demonstrated in elegant experiments on awake monkey (Guldin and Grusser, 1998), epileptic patient (Penfield, 1957), and neurologically-normal human (Lobel et al., 1999) the existence of vestibular projections to the cortex and how they combine with visual and proprioceptive information. An increasing number of researchers, often fervent disciples, have built on these findings to produce a spate of publications that have consolidated the evidence for a sense of verticality and three-dimensional body representations within the vestibular cortical areas. In the 1990s Paul Smith and colleagues examined vestibular processing in the hippocampus and its role in spatial memory. Exploring this topic in the rodent (Smith, 1997), they began to elucidate the secrets and the previously silent functions of the vestibular system. These findings led to increasing clarity about how vestibular degeneration may be related to some aspects of dementia (Previc, 2013), psychiatric diseases (Gurvich et al., 2013), and cognitive impairments in the elderly (Bigelow et al., 2015; Semenov et al., 2015). The research by Marianne Dieterich and Thomas Brandt has examined the bilateral organization of multiple multisensory cortical areas and revealed the vestibular dominance of the non-dominant hemisphere (Dieterich et al., 2003). They addressed the following questions: how is one global percept of motion and orientation in space formed, and does this dominance determine the lateralization of brain function such as handedness (Brandt and Dieterich, 2015)? A vestibular contribution to the most crucial aspects of the human sense of self and self-consciousness has recently been highlighted by neurological and neuroscientific investigations: vestibular signals contribute to the experience that the self is located within the boundaries of the body (Blanke et al., 2004; Lopez et al., 2008) and may even be involved in self-other discrimination and interactions (Lenggenhager and Lopez, 2015). In this Frontiers in Integrative Neuroscience Research Topic initiated by Sidney Simon, twenty-four articles highlight recent discoveries in the field of vestibular cognition, including: (1) Anatomy of the vestibulo-cortical pathways; (2) Spatial navigation and memory; (3) Spatial cognition, bodily and self-motion perception; (4) Vestibular stimulation and rehabilitation; (5) Posture and motor control; (6) Vestibular disorders and compensation; and (7) Development of vestibular function.

50 citations


Cites background from "Galvanic vestibular stimulation"

  • ...(2013), with an overview of the higher cognitive processes of selfconsciousness. Mast et al. (2014) also reports how vestibular disorders and some psychiatric symptoms may be entangled, completing the review of Gurvich et al....

    [...]

  • ...(2013) review neuroimaging data that have recently revealed the role of the temporo-parietal junction, insula, and retroinsular cortex in estimating the consequences of gravity for visual perception and motor preparation. In an original research article, Ferrè et al. (2013) describe the influence of GVS on the generation of motor sequences. They show that right cathodal GVS increases the generation of novel motor sequences. Bernard-Demanze et al. (2014) report original research on static and dynamic postural stability in cochlear implant (CI) patients....

    [...]

  • ...In an original research article, Ferrè et al. (2013) describe the influence of GVS on the generation of motor sequences....

    [...]

  • ...(2013) highlight the relevance of CVS for studying somatosensory perception and bodily awareness. Two clinical applications of CVS and GVS are proposed by Wilkinson and colleagues. Wilkinson et al. (2013) present a series of case reports on the effects of CVS on post-stroke aphasia....

    [...]

  • ...Lopez (2013) reviews the consequences of vestibular disorders for bodily perceptions, the sense of self and self-consciousness. Peripheral vestibular disorders may alter the perceived shape and size of the body, alter the experience of owning the body and evoke the experience that the self is strange, unreal and disembodied. Tighilet et al. (2014) describe the consequences of vestibular deafferentation for the cat histaminergic system and show that plasticity of the histamine H3 receptors supports vestibular compensation....

    [...]

Journal ArticleDOI
TL;DR: The trigeminal, visceral and vestibular control of ARAS/LC activity may explain why these input signals affect sensorimotor and cognitive functions which are not directly related to their specific informational content and are effective in relieving the symptoms of some brain pathologies, thus prompting peripheral activation of these input systems as a complementary approach for the treatment of cognitive impairments and neurodegenerative disorders.
Abstract: It is known that sensory signals sustain the background discharge of the ascending reticular activating system (ARAS) which includes the noradrenergic locus coeruleus (LC) neurons and controls the level of attention and alertness. Moreover, LC neurons influence brain metabolic activity, gene expression and brain inflammatory processes. As a consequence of the sensory control of ARAS/LC, stimulation of a sensory channel may potential influence neuronal activity and trophic state all over the brain, supporting cognitive functions and exerting a neuroprotective action. On the other hand, an imbalance of the same input on the two sides may lead to an asymmetric hemispheric excitability, leading to an impairment in cognitive functions. Among the inputs that may drive LC neurons and ARAS, those arising from the trigeminal region, from visceral organs and, possibly, from the vestibular system seem to be particularly relevant in regulating their activity. The trigeminal, visceral and vestibular control of ARAS/LC activity may explain why these input signals: (1) affect sensorimotor and cognitive functions which are not directly related to their specific informational content; and (2) are effective in relieving the symptoms of some brain pathologies, thus prompting peripheral activation of these input systems as a complementary approach for the treatment of cognitive impairments and neurodegenerative disorders.

38 citations


Cites background from "Galvanic vestibular stimulation"

  • ...…may affect several cognitive functions somehow related to self and space representation, such us the localization of tactile stimuli on the hand (Ferrè et al., 2013c), the perceived size of the touched objects (Lopez et al., 2012), the perceptual somatosensory illusion of a ‘‘fake’’ rubber hand…...

    [...]

  • ...Moreover, it influences also the balance between novel and routine motor responses to acoustic and visual stimuli (Ferrè et al., 2013a) and speed of visual memory processing (Wilkinson et al., 2008)....

    [...]

  • ...…such us the localization of tactile stimuli on the hand (Ferrè et al., 2013c), the perceived size of the touched objects (Lopez et al., 2012), the perceptual somatosensory illusion of a ‘‘fake’’ rubber hand ownership (Lopez et al., 2010) and line bisection task (Ferrè et al., 2013b)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The findings suggest that the actual postural control system during quiet stance adopts a control strategy that relies notably on velocity information and that such a controller can modulate muscle activity in anticipatory manner without using a feed-forward mechanism.
Abstract: In literature, it has been suggested that the CNS anticipates spontaneous change in body position during quiet stance and continuously modulates ankle extensor muscle activity to compensate for the...

301 citations

Journal ArticleDOI
TL;DR: This review explores and integrates task-, muscle- and frequency-related differences in the vestibular system’s contribution to posture, and proposes that the human nervous system has adapted Vestibular signals to match the mechanical properties of the system that each group of muscles controls.
Abstract: The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwidth of vestibular input on neck muscles is much broader than appendicular muscles (up to a factor of 3). This result challenges the notion that vestibular reflexes only contribute to postural control across the behavioral and physiological frequency range of the vestibular organ (i.e., 0–20 Hz). In this review, we explore and integrate these task-, muscle- and frequency-related differences in the vestibular system’s contribution to posture, and propose that the human nervous system has adapted vestibular signals to match the mechanical properties of the system that each group of muscles controls.

194 citations

Journal ArticleDOI
TL;DR: It is demonstrated that subjects can act as ”responders” to galvanic vestibular stimulation, and the finding that the coherency was highest for the 1- to 2-Hz stochastic vestibul stimulation signal may be due to the intrinsic dynamics of the quasi-static postural control system.
Abstract: Galvanic vestibular stimulation serves to modulate the continuous firing level of the peripheral vestibular afferents. It has been shown that the application of sinusoidally varying, bipolar galvanic currents to the vestibular system can lead to sinusoidally varying postural sway. Our objective was to test the hypothesis that stochastic galvanic vestibular stimulation can lead to coherent stochastic postural sway. Bipolar binaural stochastic galvanic vestibular stimulation was applied to nine healthy young subjects. Three different stochastic vestibular stimulation signals, each with a different frequency content (0–1 Hz, 1–2 Hz, and 0–2 Hz), were used. The stimulation level (range 0.4–1.5 mA, peak to peak) was determined on an individual basis. Twenty 60-s trials were conducted on each subject – 15 stimulation trials (5 trials with each stimulation signal) and 5 control (no stimulation) trials. During the trials, subjects stood in a relaxed, upright position with their head facing forward. Postural sway was evaluated by using a force platform to measure the displacements of the center of pressure (COP) under each subject’s feet. Cross-spectral measures were used to quantify the relationship between the applied stimulus and the resulting COP time series. We found significant coherency between the stochastic vestibular stimulation signal and the resulting mediolateral COP time series in the majority of trials in 8 of the 9 subjects tested. The coherency results for each stimulation signal were reproducible from trial to trial, and the highest degree of coherency was found for the 1- to 2-Hz stochastic vestibular stimulation signal. In general, for the nine subjects tested, we did not find consistent significant coherency between the stochastic vestibular stimulation signals and the anteroposterior COP time series. This work demonstrates that, in subjects who are facing forward, bipolar binaural stochastic galvanic stimulation of the vestibular system leads to coherent stochastic mediolateral postural sway, but it does not lead to coherent stochastic anteroposterior postural sway. Our finding that the coherency was highest for the 1- to 2-Hz stochastic vestibular stimulation signal may be due to the intrinsic dynamics of the quasi-static postural control system. In particular, it may result from the effects of the vestibular stimulus simply being superimposed upon the quiet-standing COP displacements. By utilizing stochastic stimulation signals, we ensured that the subjects could not predict a change in the vestibular stimulus. Thus, our findings indicate that subjects can act as ”responders” to galvanic vestibular stimulation.

104 citations

Journal ArticleDOI
TL;DR: The vestibular system is the one sensory organ dedicated to gravity perception, which along with light and oxygen served as a motor of evolution.
Abstract: In the nineteenth century Pierre–Jean–Marie Flourens (1825) and Ernst Mach described the vestibular system and its peripheral organs while Robert Barany, rewarded by the Nobel prize in 1914, was the first to investigate vestibular disorders with caloric tests making surgical treatments of the vestibular organ possible. Recently, Graf and Klam (2006) have reminded us that this ancient sensory system appeared more than 500 million years ago. Logically its influence would most likely not be restricted to balance reflexes at the brainstem level; it must have also shaped our brain. The vestibular system is the one sensory organ dedicated to gravity perception, which along with light and oxygen served as a motor of evolution. In the 1950s the groups of Otto–Joachim Grusser in Germany, Wilder Penfield in Canada, and later the group of Alain Berthoz in France, demonstrated in elegant experiments on awake monkey (Guldin and Grusser, 1998), epileptic patient (Penfield, 1957), and neurologically-normal human (Lobel et al., 1999) the existence of vestibular projections to the cortex and how they combine with visual and proprioceptive information. An increasing number of researchers, often fervent disciples, have built on these findings to produce a spate of publications that have consolidated the evidence for a sense of verticality and three-dimensional body representations within the vestibular cortical areas. In the 1990s Paul Smith and colleagues examined vestibular processing in the hippocampus and its role in spatial memory. Exploring this topic in the rodent (Smith, 1997), they began to elucidate the secrets and the previously silent functions of the vestibular system. These findings led to increasing clarity about how vestibular degeneration may be related to some aspects of dementia (Previc, 2013), psychiatric diseases (Gurvich et al., 2013), and cognitive impairments in the elderly (Bigelow et al., 2015; Semenov et al., 2015). The research by Marianne Dieterich and Thomas Brandt has examined the bilateral organization of multiple multisensory cortical areas and revealed the vestibular dominance of the non-dominant hemisphere (Dieterich et al., 2003). They addressed the following questions: how is one global percept of motion and orientation in space formed, and does this dominance determine the lateralization of brain function such as handedness (Brandt and Dieterich, 2015)? A vestibular contribution to the most crucial aspects of the human sense of self and self-consciousness has recently been highlighted by neurological and neuroscientific investigations: vestibular signals contribute to the experience that the self is located within the boundaries of the body (Blanke et al., 2004; Lopez et al., 2008) and may even be involved in self-other discrimination and interactions (Lenggenhager and Lopez, 2015). In this Frontiers in Integrative Neuroscience Research Topic initiated by Sidney Simon, twenty-four articles highlight recent discoveries in the field of vestibular cognition, including: (1) Anatomy of the vestibulo-cortical pathways; (2) Spatial navigation and memory; (3) Spatial cognition, bodily and self-motion perception; (4) Vestibular stimulation and rehabilitation; (5) Posture and motor control; (6) Vestibular disorders and compensation; and (7) Development of vestibular function.

50 citations

Journal ArticleDOI
TL;DR: The trigeminal, visceral and vestibular control of ARAS/LC activity may explain why these input signals affect sensorimotor and cognitive functions which are not directly related to their specific informational content and are effective in relieving the symptoms of some brain pathologies, thus prompting peripheral activation of these input systems as a complementary approach for the treatment of cognitive impairments and neurodegenerative disorders.
Abstract: It is known that sensory signals sustain the background discharge of the ascending reticular activating system (ARAS) which includes the noradrenergic locus coeruleus (LC) neurons and controls the level of attention and alertness. Moreover, LC neurons influence brain metabolic activity, gene expression and brain inflammatory processes. As a consequence of the sensory control of ARAS/LC, stimulation of a sensory channel may potential influence neuronal activity and trophic state all over the brain, supporting cognitive functions and exerting a neuroprotective action. On the other hand, an imbalance of the same input on the two sides may lead to an asymmetric hemispheric excitability, leading to an impairment in cognitive functions. Among the inputs that may drive LC neurons and ARAS, those arising from the trigeminal region, from visceral organs and, possibly, from the vestibular system seem to be particularly relevant in regulating their activity. The trigeminal, visceral and vestibular control of ARAS/LC activity may explain why these input signals: (1) affect sensorimotor and cognitive functions which are not directly related to their specific informational content; and (2) are effective in relieving the symptoms of some brain pathologies, thus prompting peripheral activation of these input systems as a complementary approach for the treatment of cognitive impairments and neurodegenerative disorders.

38 citations