scispace - formally typeset
Search or ask a question
Book

Game Theory in Wireless and Communication Networks: Theory, Models, and Applications

TL;DR: This unified treatment of game theory focuses on finding state-of-the-art solutions to issues surrounding the next generation of wireless and communications networks and covers a wide range of techniques for modeling, designing and analysing communication networks using game theory, as well as state of theart distributed design techniques.
Abstract: This unified treatment of game theory focuses on finding state-of-the-art solutions to issues surrounding the next generation of wireless and communications networks. Future networks will rely on autonomous and distributed architectures to improve the efficiency and flexibility of mobile applications, and game theory provides the ideal framework for designing efficient and robust distributed algorithms. This book enables readers to develop a solid understanding of game theory, its applications and its use as an effective tool for addressing wireless communication and networking problems. The key results and tools of game theory are covered, as are various real-world technologies including 3G networks, wireless LANs, sensor networks, dynamic spectrum access and cognitive networks. The book also covers a wide range of techniques for modeling, designing and analysing communication networks using game theory, as well as state-of-the-art distributed design techniques. This is an ideal resource for communications engineers, researchers, and graduate and undergraduate students.

Content maybe subject to copyright    Report

Citations
More filters
Posted Content
TL;DR: This tutorial provides key guidelines on how to analyze, optimize, and design UAV-based wireless communication systems on the basis of 3D deployment, performance analysis, channel modeling, and energy efficiency.
Abstract: The use of flying platforms such as unmanned aerial vehicles (UAVs), popularly known as drones, is rapidly growing. In particular, with their inherent attributes such as mobility, flexibility, and adaptive altitude, UAVs admit several key potential applications in wireless systems. On the one hand, UAVs can be used as aerial base stations to enhance coverage, capacity, reliability, and energy efficiency of wireless networks. On the other hand, UAVs can operate as flying mobile terminals within a cellular network. Such cellular-connected UAVs can enable several applications ranging from real-time video streaming to item delivery. In this paper, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented. Moreover, the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated. In particular, the key UAV challenges such as three-dimensional deployment, performance analysis, channel modeling, and energy efficiency are explored along with representative results. Then, open problems and potential research directions pertaining to UAV communications are introduced. Finally, various analytical frameworks and mathematical tools such as optimization theory, machine learning, stochastic geometry, transport theory, and game theory are described. The use of such tools for addressing unique UAV problems is also presented. In a nutshell, this tutorial provides key guidelines on how to analyze, optimize, and design UAV-based wireless communication systems.

1,071 citations

Journal ArticleDOI
TL;DR: An overview on the potential of applying game theory for addressing relevant and timely open problems in three emerging areas that pertain to the smart grid: microgrid systems, demand-side management, and communications is provided.
Abstract: The future smart grid is envisioned as a large scale cyberphysical system encompassing advanced power, communications, control, and computing technologies. To accommodate these technologies, it will have to build on solid mathematical tools that can ensure an efficient and robust operation of such heterogeneous and large-scale cyberphysical systems. In this context, this article is an overview on the potential of applying game theory for addressing relevant and timely open problems in three emerging areas that pertain to the smart grid: microgrid systems, demand-side management, and communications. In each area, the state-of-the-art contributions are gathered and a systematic treatment, using game theory, of some of the most relevant problems for future power systems is provided. Future opportunities for adopting game-theoretic methodologies in the transition from legacy systems toward smart and intelligent grids are also discussed. In a nutshell, this article provides a comprehensive account of the application of game theory in smart grid systems tailored to the interdisciplinary characteristics of these systems that integrate components from power systems, networking, communications, and control.

751 citations


Cites background from "Game Theory in Wireless and Communi..."

  • ...In essence, cooperative game theory in both of its branches provides tools that allow the players to decide with whom to cooperate and under which terms given several cooperation incentives and fairness rules....

    [...]

  • ...However, the intermittent generation of certain microgrids coupled with the unpredictable nature of CONTROLLING THE OPERATION OF THE MICROGRIDS AND INTEGRATING THEM IN THE SMART GRID INTRODUCES SEVERAL TECHNICAL CHALLENGES THAT NEED TO BE ADDRESSED SO AS TO ENSURE AN EFFICIENT AND RELIABLE GRID OPERATION....

    [...]

  • ...This heterogeneous nature of the smart grid motivates the adoption of advanced techniques for overcoming the various technical challenges at different levels such as design, control, and implementation....

    [...]

  • ...One simple example would be to apply cooperative game theory to study how relaying can be performed in a large-scale smart grid network so as to improve the efficiency of the communication links between smart grid elements....

    [...]

  • ...…the intermittent generation of certain microgrids coupled with the unpredictable nature of CONTROLLING THE OPERATION OF THE MICROGRIDS AND INTEGRATING THEM IN THE SMART GRID INTRODUCES SEVERAL TECHNICAL CHALLENGES THAT NEED TO BE ADDRESSED SO AS TO ENSURE AN EFFICIENT AND RELIABLE GRID OPERATION....

    [...]

Journal ArticleDOI
TL;DR: This paper provides a systematic vision of the organization of the blockchain networks, a comprehensive survey of the emerging applications of blockchain networks in a broad area of telecommunication, and discusses several open issues in the protocol design for blockchain consensus.
Abstract: The past decade has witnessed the rapid evolution in blockchain technologies, which has attracted tremendous interests from both the research communities and industries. The blockchain network was originated from the Internet financial sector as a decentralized, immutable ledger system for transactional data ordering. Nowadays, it is envisioned as a powerful backbone/framework for decentralized data processing and data-driven self-organization in flat, open-access networks. In particular, the plausible characteristics of decentralization, immutability, and self-organization are primarily owing to the unique decentralized consensus mechanisms introduced by blockchain networks. This survey is motivated by the lack of a comprehensive literature review on the development of decentralized consensus mechanisms in blockchain networks. In this paper, we provide a systematic vision of the organization of blockchain networks. By emphasizing the unique characteristics of decentralized consensus in blockchain networks, our in-depth review of the state-of-the-art consensus protocols is focused on both the perspective of distributed consensus system design and the perspective of incentive mechanism design. From a game-theoretic point of view, we also provide a thorough review of the strategy adopted for self-organization by the individual nodes in the blockchain backbone networks. Consequently, we provide a comprehensive survey of the emerging applications of blockchain networks in a broad area of telecommunication. We highlight our special interest in how the consensus mechanisms impact these applications. Finally, we discuss several open issues in the protocol design for blockchain consensus and the related potential research directions.

680 citations

Book
05 Jun 2015
TL;DR: This monograph presents a unified framework for energy efficiency maximization in wireless networks via fractional programming theory, showing how the described framework is general enough to be extended in these directions, proving useful in tackling future challenges that may arise in the design of energy-efficient future wireless networks.
Abstract: This monograph presents a unified framework for energy efficiency maximization in wireless networks via fractional programming theory. The definition of energy efficiency is introduced, with reference to single-user and multi-user wireless networks, and it is observed how the problem of resource allocation for energy efficiency optimization is naturally cast as a fractional program. An extensive review of the state-of-the-art in energy efficiency optimization by fractional programming is provided, with reference to centralized and distributed resource allocation schemes. A solid background on fractional programming theory is provided. The key-notion of generalized concavity is presented and its strong connection with fractional functions described. A taxonomy of fractional problems is introduced, and for each class of fractional problem, general solution algorithms are described, discussing their complexity and convergence properties. The described theoretical and algorithmic framework is applied to solve energy efficiency maximization problems in practical wireless networks. A general system and signal model is developed which encompasses many relevant special cases, such as one-hop and two-hop heterogeneous networks, multi-cell networks, small-cell networks, device-to-device systems, cognitive radio systems, and hardware-impaired networks, wherein multiple-antennas and multiple subcarriers are possibly employed. Energy-efficient resource allocation algorithms are developed, considering both centralized, cooperative schemes, as well as distributed approaches for self-organizing networks. Finally, some remarks on future lines of research are given, stating some open problems that remain to be studied. It is shown how the described framework is general enough to be extended in these directions, proving useful in tackling future challenges that may arise in the design of energy-efficient future wireless networks.

570 citations

Journal ArticleDOI
TL;DR: This first comprehensive tutorial on the use of matching theory, a Nobel Prize winning framework, for resource management in wireless networks is developed and results show how matching theory can effectively improve the performance of resource allocation in all three applications discussed.
Abstract: The emergence of novel wireless networking paradigms such as small cell and cognitive radio networks has forever transformed the way in which wireless systems are operated. In particular, the need for self-organizing solutions to manage the scarce spectral resources has become a prevalent theme in many emerging wireless systems. In this article, the first comprehensive tutorial on the use of matching theory, a Nobel Prize winning framework, for resource management in wireless networks is developed. To cater for the unique features of emerging wireless networks, a novel, wireless-oriented classification of matching theory is proposed. Then the key solution concepts and algorithmic implementations of this framework are exposed. The developed concepts are applied in three important wireless networking areas in order to demonstrate the usefulness of this analytical tool. Results show how matching theory can effectively improve the performance of resource allocation in all three applications discussed.

515 citations


Cites background from "Game Theory in Wireless and Communi..."

  • ...Despite their potential, such game-theoretic approaches present some shortcomings....

    [...]

  • ...The sought solution is a matching functionµ : N ∪R → N ∪R which provides the final allocation between users and resources....

    [...]

References
More filters
Patent
31 Jul 2007
TL;DR: In an embodiment, a server includes a processor that manages information in a database of the server, regulates, using instructions of a policy service in theServer, communication of information from each of the clients to other entities, maintains reconfiguration policy.
Abstract: A wireless communication method in a system in which subscriber stations are each operable for communication with a base station is provided. The base station is capable of performing simultaneous communications with a plurality of the subscriber stations simultaneously by exchange of packets each conforming with a layered protocol of said system. The packets include a first portion for defining physical layer (PHY) parameters and a second portion for defining media access layer (MAC) parameters. Furthermore, communications between the subscriber stations and the base station are performed wholly or partly through at least one relay station. In this system, the method includes, in the relay station, receiving a plurality of packets from the subscriber stations, detecting the second portion of each of the packets, combining the detected second portions to form a second portion of at least one new packet, and transmitting the new packet to the base station.

248 citations