scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Gap symmetry and structure of Fe-based superconductors

TL;DR: In this paper, it was shown that the properties of Fe-pnictide and chalcogenide superconductors can be explained by considering spin fluctuation theory and accounting for the peculiar electronic structure of these systems coupled with the likely sign-changing s-wave symmetry.
Abstract: The recently discovered Fe-pnictide and chalcogenide superconductors display low-temperature properties suggesting superconducting gap structures which appear to vary substantially from family to family, and even within families as a function of doping or pressure. We propose that this apparent nonuniversality can actually be understood by considering the predictions of spin fluctuation theory and accounting for the peculiar electronic structure of these systems, coupled with the likely 'sign-changing s-wave' (s\pm) symmetry. We review theoretical aspects, materials properties and experimental evidence relevant to this suggestion, and discuss which further measurements would be useful to settle these issues.
Citations
More filters
Journal ArticleDOI
TL;DR: A detailed review of the superconductivity of FePnictide and chalcogenide (FePn/Ch) superconductors can be found in this paper.
Abstract: Kamihara and coworkers' report of superconductivity at ${T}_{c}=26\text{ }\text{ }\mathrm{K}$ in fluorine-doped LaFeAsO inspired a worldwide effort to understand the nature of the superconductivity in this new class of compounds. These iron pnictide and chalcogenide (FePn/Ch) superconductors have Fe electrons at the Fermi surface, plus an unusual Fermiology that can change rapidly with doping, which lead to normal and superconducting state properties very different from those in standard electron-phonon coupled ``conventional'' superconductors. Clearly, superconductivity and magnetism or magnetic fluctuations are intimately related in the FePn/Ch, and even coexist in some. Open questions, including the superconducting nodal structure in a number of compounds, abound and are often dependent on improved sample quality for their solution. With ${T}_{c}$ values up to 56 K, the six distinct Fe-containing superconducting structures exhibit complex but often comparable behaviors. The search for correlations and explanations in this fascinating field of research would benefit from an organization of the large, seemingly disparate data set. This review provides an overview, using numerous references, with a focus on the materials and their superconductivity.

1,349 citations


Cites background or result from "Gap symmetry and structure of Fe-ba..."

  • ...…correlations in 122 KxFe2 ySe2, while Pourret et al.’s (2011) TEP data are interpreted as showing that 11 FeTe0:6Se0:4 [unique among the FePn/Ch and in agreement with DMFT calculations (Hirschfeld, Korshunov, and Mazin, 2011)] has electronic correlations comparable in strength to the cuprates....

    [...]

  • ...…Mandrus et al. (2010) (BaFe2As2 and dopings thereof), Paglione and Greene (2010) (overview), Johnston (2010) (comprehensive overview, emphasis on normal state properties), Ivanovskii (2011) (the 122 defect structure superconductors), and Hirschfeld, Korshunov, and Mazin (2011) (theory)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the current theoretical and experimental state of the field of nematic order in superconductors is discussed and a review of the current literature is given. But beyond this, there is little consensus on how nematic ordering arises and whether it has an effect on superconductivity.
Abstract: Nematic order in the iron-based superconductors breaks the symmetry between the x and y directions in the Fe plane. Beyond this, however, there is little consensus on how nematic order arises and whether it has an effect on superconductivity. This Review discusses the current theoretical and experimental state of the field.

912 citations

Journal ArticleDOI
TL;DR: In this paper, the authors argue that the magnetism arises from both itinerant and localized electrons and that the magnetic states found in iron-based superconductors are more complex than originally thought.
Abstract: The magnetic states found in iron-based superconductors are more complex than originally thought. This Review argues that the magnetism arises from both itinerant and localized electrons.

434 citations


Cites background from "Gap symmetry and structure of Fe-ba..."

  • ...In these cases, electronic band structure calculations have revealed that their Fermi Surfaces (FS) are composed of nearly cylindrical hole and electron pockets at the Γ(0, 0) and M(1, 0)/M(0, 1) points, respectively [15, 16]....

    [...]

Journal ArticleDOI
TL;DR: The current status of iron-based superconductors (IBSC) is described in this paper, covering most up-to-date research progress along with some background research, focusing on materials (bulk and thin film) and pairing mechanism.
Abstract: Since the discovery of high Tc iron-based superconductors in early 2008, more than 15,000 papers have been published as a result of intensive research. This paper describes the current status of iron-based superconductors (IBSC) covering most up-to-date research progress along with the some background research, focusing on materials (bulk and thin film) and pairing mechanism.

341 citations

Journal ArticleDOI
TL;DR: In this paper, the isovalent substituted iron pnictide BaFe2(As1−xPx)2 offers a new platform for the study of quantum criticality, providing a unique opportunity to study the evolution of the electronic properties in a wide range of the phase diagram.
Abstract: Whether a quantum critical point (QCP) lies beneath the superconducting dome has been a long-standing issue that remains unresolved in many classes of unconventional superconductors, notably cuprates, heavy fermions, and, most recently, iron pnictides. The existence of a QCP may offer a route to understanding the origin of unconventional superconductors’ anomalous non-Fermi liquid properties, the microscopic coexistence between unconventional superconductivity and magnetic or some other exotic order, and, ultimately, the mechanism of superconductivity itself. The isovalent substituted iron pnictide BaFe2(As1−xPx)2 offers a new platform for the study of quantum criticality, providing a unique opportunity to study the evolution of the electronic properties in a wide range of the phase diagram. Recent experiments in BaFe2(As1−xPx)2 have provided the first clear and unambiguous evidence of a second-order quantum phase transition lying beneath the superconducting dome.

314 citations


Cites background or methods from "Gap symmetry and structure of Fe-ba..."

  • ...The superconducting gap structure in the 122 family has been studied extensively by means of various experimental techniques [9]....

    [...]

  • ...The strong temperature dependence of δλL(T ) at low temperatures observed on both sides of the QCP argues against a drastic change in the superconducting gap structure [9, 113]....

    [...]

  • ...[9] Hirschfeld PJ, Korshunov MM, Mazin II....

    [...]

  • ...The high transition temperatures in both cuprates and iron-pnictides cannot be explained theoretically by the conventional electron-phonon pairing mechanism and thus there is almost complete consensus that the origin of superconductivity of both systems has an unconventional origin [9, 10]....

    [...]

References
More filters
Book ChapterDOI

[...]

01 Jan 2012

139,059 citations


"Gap symmetry and structure of Fe-ba..." refers background in this paper

  • ...by several authors early on due to the possibility of orbital ordering in the Fe d states at the orthorhombic transition [100, 84, 101, 102]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a theory of superconductivity is presented, based on the fact that the interaction between electrons resulting from virtual exchange of phonons is attractive when the energy difference between the electrons states involved is less than the phonon energy, and it is favorable to form a superconducting phase when this attractive interaction dominates the repulsive screened Coulomb interaction.
Abstract: A theory of superconductivity is presented, based on the fact that the interaction between electrons resulting from virtual exchange of phonons is attractive when the energy difference between the electrons states involved is less than the phonon energy, $\ensuremath{\hbar}\ensuremath{\omega}$. It is favorable to form a superconducting phase when this attractive interaction dominates the repulsive screened Coulomb interaction. The normal phase is described by the Bloch individual-particle model. The ground state of a superconductor, formed from a linear combination of normal state configurations in which electrons are virtually excited in pairs of opposite spin and momentum, is lower in energy than the normal state by amount proportional to an average ${(\ensuremath{\hbar}\ensuremath{\omega})}^{2}$, consistent with the isotope effect. A mutually orthogonal set of excited states in one-to-one correspondence with those of the normal phase is obtained by specifying occupation of certain Bloch states and by using the rest to form a linear combination of virtual pair configurations. The theory yields a second-order phase transition and a Meissner effect in the form suggested by Pippard. Calculated values of specific heats and penetration depths and their temperature variation are in good agreement with experiment. There is an energy gap for individual-particle excitations which decreases from about $3.5k{T}_{c}$ at $T=0\ifmmode^\circ\else\textdegree\fi{}$K to zero at ${T}_{c}$. Tables of matrix elements of single-particle operators between the excited-state superconducting wave functions, useful for perturbation expansions and calculations of transition probabilities, are given.

9,619 citations

Journal ArticleDOI
TL;DR: It is reported that a layered iron-based compound LaOFeAs undergoes superconducting transition under doping with F- ions at the O2- site and exhibits a trapezoid shape dependence on the F- content.
Abstract: We report that a layered iron-based compound LaOFeAs undergoes superconducting transition under doping with F- ions at the O2- site. The transition temperature (Tc) exhibits a trapezoid shape dependence on the F- content, with the highest Tc of ∼26 K at ∼11 atom %.

6,643 citations

Journal ArticleDOI
TL;DR: A review of the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds is presented in this article, with the purpose of providing an updated summary of the extensive literature.
Abstract: The last decade witnessed significant progress in angle-resolved photoemission spectroscopy (ARPES) and its applications. Today, ARPES experiments with 2-meV energy resolution and $0.2\ifmmode^\circ\else\textdegree\fi{}$ angular resolution are a reality even for photoemission on solids. These technological advances and the improved sample quality have enabled ARPES to emerge as a leading tool in the investigation of the high-${T}_{c}$ superconductors. This paper reviews the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds, with the purpose of providing an updated summary of the extensive literature. The low-energy excitations are discussed with emphasis on some of the most relevant issues, such as the Fermi surface and remnant Fermi surface, the superconducting gap, the pseudogap and $d$-wave-like dispersion, evidence of electronic inhomogeneity and nanoscale phase separation, the emergence of coherent quasiparticles through the superconducting transition, and many-body effects in the one-particle spectral function due to the interaction of the charge with magnetic and/or lattice degrees of freedom. Given the dynamic nature of the field, we chose to focus mainly on reviewing the experimental data, as on the experimental side a general consensus has been reached, whereas interpretations and related theoretical models can vary significantly. The first part of the paper introduces photoemission spectroscopy in the context of strongly interacting systems, along with an update on the state-of-the-art instrumentation. The second part provides an overview of the scientific issues relevant to the investigation of the low-energy electronic structure by ARPES. The rest of the paper is devoted to the experimental results from the cuprates, and the discussion is organized along conceptual lines: normal-state electronic structure, interlayer interaction, superconducting gap, coherent superconducting peak, pseudogap, electron self-energy, and collective modes. Within each topic, ARPES data from the various copper oxides are presented.

3,077 citations

Journal ArticleDOI
TL;DR: It is argued that the newly discovered superconductivity in a nearly magnetic, Fe-based layered compound is unconventional and mediated by antiferromagnetic spin fluctuations, though different from the usual superexchange and specific to this compound.
Abstract: We argue that the newly discovered superconductivity in a nearly magnetic, Fe-based layered compound is unconventional and mediated by antiferromagnetic spin fluctuations, though different from the usual superexchange and specific to this compound. This resulting state is an example of extended s-wave pairing with a sign reversal of the order parameter between different Fermi surface sheets. The main role of doping in this scenario is to lower the density of states and suppress the pair-breaking ferromagnetic fluctuations.

1,952 citations