scispace - formally typeset
Search or ask a question
Journal ArticleDOI

GAPDH mediates nitrosylation of nuclear proteins

TL;DR: It is shown that SNO–GAPDH physiologically transnitrosylates nuclear proteins, including the deacetylating enzyme sirtuin-1 (SIRT1), histone de acetylase-2 (HDAC2) and DNA-activated protein kinase (DNA-PK), which suggest that protein–protein transfer of nitric oxide groups may be a general mechanism in cellular signal transduction.
Abstract: S-nitrosylation of proteins by nitric oxide is a major mode of signalling in cells. S-nitrosylation can mediate the regulation of a range of proteins, including prominent nuclear proteins, such as HDAC2 (ref. 2) and PARP1 (ref. 3). The high reactivity of the nitric oxide group with protein thiols, but the selective nature of nitrosylation within the cell, implies the existence of targeting mechanisms. Specificity of nitric oxide signalling is often achieved by the binding of nitric oxide synthase (NOS) to target proteins, either directly or through scaffolding proteins such as PSD-95 (ref. 5) and CAPON. As the three principal isoforms of NOS--neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS)--are primarily non-nuclear, the mechanisms by which nuclear proteins are selectively nitrosylated have been elusive. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is physiologically nitrosylated at its Cys 150 residue. Nitrosylated GAPDH (SNO-GAPDH) binds to Siah1, which possesses a nuclear localization signal, and is transported to the nucleus. Here, we show that SNO-GAPDH physiologically transnitrosylates nuclear proteins, including the deacetylating enzyme sirtuin-1 (SIRT1), histone deacetylase-2 (HDAC2) and DNA-activated protein kinase (DNA-PK). Our findings reveal a novel mechanism for targeted nitrosylation of nuclear proteins and suggest that protein-protein transfer of nitric oxide groups may be a general mechanism in cellular signal transduction.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This Review will focus exclusively on cysteine, whose identity as cellular target or “sensor” of reactive intermediates is most prevalent and established and which results in a range of sulfur-containing products, not just disulfide bridges, as typically presented in biochemistry textbooks.
Abstract: Reactive oxygen, nitrogen, and sulfur species, referred to as ROS, RNS, and RSS, respectively, are produced during normal cell function and in response to various stimuli. An imbalance in the metabolism of these reactive intermediates results in the phenomenon known as oxidative stress. If left unchecked, oxidative molecules can inflict damage on all classes of biological macromolecules and eventually lead to cell death. Indeed, sustained elevated levels of reactive species have been implicated in the etiology (e.g., atherosclerosis, hypertension, diabetes) or the progression (e.g., stroke, cancer, and neurodegenerative disorders) of a number of human diseases.1 Over the past several decades, however, a new paradigm has emerged in which the aforementioned species have also been shown to function as targeted, intracellular second messengers with regulatory roles in an array of physiological processes.2 Against this backdrop, it is not surprising that considerable ongoing efforts are aimed at elucidating the role that these reactive intermediates play in health and disease. Site-specific, covalent modification of proteins represents a prominent molecular mechanism for transforming an oxidant signal into a biological response. Amino acids that are candidates for reversible modification include cysteines whose thiol (i.e., sulfhydryl) side chain is deprotonated at physiological pH, which is an important attribute for enhancing reactivity. While reactive species can modify other amino acids (e.g., histidine, methionine, tryptophan, and tyrosine), this Review will focus exclusively on cysteine, whose identity as cellular target or “sensor” of reactive intermediates is most prevalent and established.3 Oxidation of thiols results in a range of sulfur-containing products, not just disulfide bridges, as typically presented in biochemistry textbooks. An overview of the most relevant forms of oxidized sulfur species found in vivo is presented in Chart 1. Open in a separate window Chart 1 Biologically Relevant Cysteine Chemotypesa aRed, irreversible modifications. Green, unique enzyme intermediates. Note: Additional modifications can form as enzyme intermediates including thiyl radicals, disulfides, and persulfides.

899 citations

Journal ArticleDOI
TL;DR: The molecular mechanisms of the antagonistic signaling between NF-κB and SIRT1 are examined and how this crosstalk controls inflammatory process and energy metabolism is described to induce the appearance of chronic inflammation in metabolic diseases.

683 citations

Journal ArticleDOI
TL;DR: The myriad roles of NO and SNOs in plant biology are reviewed and, where known, the molecular mechanisms underpining their activity are reviewed.
Abstract: Nitric oxide (NO), a gaseous, redox-active small molecule, is gradually becoming established as a central regulator of growth, development, immunity and environmental interactions in plants. A major route for the transfer of NO bioactivity is S-nitrosylation, the covalent attachment of an NO moiety to a protein cysteine thiol to form an S-nitrosothiol (SNO). This chemical transformation is rapidly emerging as a prototypic, redox-based post-translational modification integral to the life of plants. Here we review the myriad roles of NO and SNOs in plant biology and, where known, the molecular mechanisms underpining their activity.

403 citations


Cites background from "GAPDH mediates nitrosylation of nuc..."

  • ...The accumulating evidence from other organisms suggests that a nascent set of nitrosylases might just be emerging (Kornberg et al., 2010)....

    [...]

Journal ArticleDOI
TL;DR: Methods of cigarette smoke/oxidant-mediated redox posttranslational modifications of SIRT1 and its roles in PARP1 and NF-κB activation, and FOXO3 and eNOS regulation, as well as chromatin remodeling/histone modifications during inflammaging, are discussed.

343 citations


Cites background from "GAPDH mediates nitrosylation of nuc..."

  • ...[41] showed that nitrosylated glyceraldehyde-3-phosphate dehydrogenase (GAPDH)...

    [...]

  • ...lation sites [36–39], one SUMOylation residue [40], and two S-nitrosylation residues [41]....

    [...]

Journal ArticleDOI
TL;DR: The aim of this review is to detail the well-established mechanisms of redox regulation of Calvin–Benson cycle enzymes as well as the most recent reports indicating that this pathway is tightly controlled by multiple interconnected redox post-translational modifications.
Abstract: Reversible redox post-translational modifications such as oxido-reduction of disulfide bonds, S-nitrosylation and S-glutathionylation, play a prominent role in the regulation of cell metabolism and signaling in all organisms. These modifications are mainly controlled by members of the thioredoxin and glutaredoxin families. Early studies in photosynthetic organisms have identified the Calvin-Benson cycle, the photosynthetic pathway responsible for carbon assimilation, as a redox regulated process. Indeed, 4 out of 11 enzymes of the cycle were shown to have a low activity in the dark and to be activated in the light through thioredoxin-dependent reduction of regulatory disulfide bonds. The underlying molecular mechanisms were extensively studied at the biochemical and structural level. Unexpectedly, recent biochemical and proteomic studies have suggested that all enzymes of the cycle and several associated regulatory proteins may undergo redox regulation through multiple redox post-translational modifications including glutathionylation and nitrosylation. The aim of this review is to detail the well-established mechanisms of redox regulation of Calvin-Benson cycle enzymes as well as the most recent reports indicating that this pathway is tightly controlled by multiple interconnected redox post-translational modifications. This redox control is likely allowing fine tuning of the Calvin-Benson cycle required for adaptation to varying environmental conditions, especially during responses to biotic and abiotic stresses.

340 citations


Cites background from "GAPDH mediates nitrosylation of nuc..."

  • ...Indeed, upon apoptotic stimulation, nitrosylation of mammalian GAPDH triggers its translocation to the nucleus where it regulates gene expression through several mechanisms including transnitrosylation of nuclear proteins (Kornberg et al., 2010)....

    [...]

References
More filters
Journal ArticleDOI
14 Dec 2006-Nature
TL;DR: Dysfunction of the immune response and metabolic regulation interface can be viewed as a central homeostatic mechanism, dysfunction of which can lead to a cluster of chronic metabolic disorders, particularly obesity, type 2 diabetes and cardiovascular disease.
Abstract: Metabolic and immune systems are among the most fundamental requirements for survival. Many metabolic and immune response pathways or nutrient- and pathogen-sensing systems have been evolutionarily conserved throughout species. As a result, immune response and metabolic regulation are highly integrated and the proper function of each is dependent on the other. This interface can be viewed as a central homeostatic mechanism, dysfunction of which can lead to a cluster of chronic metabolic disorders, particularly obesity, type 2 diabetes and cardiovascular disease. Collectively, these diseases constitute the greatest current threat to global human health and welfare.

7,536 citations

Journal ArticleDOI
16 Nov 2006-Nature
TL;DR: It is shown that resveratrol shifts the physiology of middle-aged mice on a high-calorie diet towards that of mice onA standard diet and significantly increases their survival and point to new approaches for treating obesity-related disorders and diseases of ageing.
Abstract: Resveratrol (3,5,49-trihydroxystilbene) extends the lifespan of diverse species including Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster. In these organisms, lifespan extension is dependent on Sir2, a conserved deacetylase proposed to underlie the beneficial effects of caloric restriction. Here we show that resveratrol shifts the physiology of middle-aged mice on a high-calorie diet towards that of mice on a standard diet and significantly increases their survival. Resveratrol produces changes associated with longer lifespan, including increased insulin sensitivity, reduced insulin-like growth factor-1 (IGF-I) levels, increased AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-c coactivator 1a (PGC-1a) activity, increased mitochondrial number, and improved motor function. Parametric analysis of gene set enrichment revealed that resveratrol opposed the effects of the high-calorie diet in 144 out of 153 significantly altered pathways. These data show that improving general health in mammals using small molecules is an attainable goal, and point to new approaches for treating obesity-related disorders and diseases of ageing.

4,088 citations

Journal ArticleDOI
15 Dec 2006-Cell
TL;DR: RSV's effects were associated with an induction of genes for oxidative phosphorylation and mitochondrial biogenesis and were largely explained by an RSV-mediated decrease in P GC-1alpha acetylation and an increase in PGC-1 alpha activity.

3,740 citations

Journal ArticleDOI
03 Mar 2005-Nature
TL;DR: It is shown that the Sir2 homologue, SIRT1 controls the gluconeogenic/glycolytic pathways in liver in response to fasting signals through the transcriptional coactivator PGC-1α, and this findings have strong implications for the basic pathways of energy homeostasis, diabetes and lifespan.
Abstract: Homeostatic mechanisms in mammals respond to hormones and nutrients to maintain blood glucose levels within a narrow range. Caloric restriction causes many changes in glucose metabolism and extends lifespan; however, how this metabolism is connected to the ageing process is largely unknown. We show here that the Sir2 homologue, SIRT1--which modulates ageing in several species--controls the gluconeogenic/glycolytic pathways in liver in response to fasting signals through the transcriptional coactivator PGC-1alpha. A nutrient signalling response that is mediated by pyruvate induces SIRT1 protein in liver during fasting. We find that once SIRT1 is induced, it interacts with and deacetylates PGC-1alpha at specific lysine residues in an NAD(+)-dependent manner. SIRT1 induces gluconeogenic genes and hepatic glucose output through PGC-1alpha, but does not regulate the effects of PGC-1alpha on mitochondrial genes. In addition, SIRT1 modulates the effects of PGC-1alpha repression of glycolytic genes in response to fasting and pyruvate. Thus, we have identified a molecular mechanism whereby SIRT1 functions in glucose homeostasis as a modulator of PGC-1alpha. These findings have strong implications for the basic pathways of energy homeostasis, diabetes and lifespan.

2,841 citations

Journal ArticleDOI
05 Dec 2003-Science
TL;DR: This map serves as a starting point for a systems biology modeling of multicellular organisms, including humans, and recapitulated known pathways, extended pathways, and uncovered previously unknown pathway components.
Abstract: Drosophila melanogaster is a proven model system for many aspects of human biology. Here we present a two-hybrid-based protein-interaction map of the fly proteome. A total of 10,623 predicted transcripts were isolated and screened against standard and normalized complementary DNA libraries to produce a draft map of 7048 proteins and 20,405 interactions. A computational method of rating two-hybrid interaction confidence was developed to refine this draft map to a higher confidence map of 4679 proteins and 4780 interactions. Statistical modeling of the network showed two levels of organization: a short-range organization, presumably corresponding to multiprotein complexes, and a more global organization, presumably corresponding to intercomplex connections. The network recapitulated known pathways, extended pathways, and uncovered previously unknown pathway components. This map serves as a starting point for a systems biology modeling of multicellular organisms, including humans.

2,414 citations