scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Gasdermin E Deletion Attenuates Ureteral Obstruction- and 5/6 Nephrectomy-Induced Renal Fibrosis and Kidney Dysfunction.

21 Oct 2021-Frontiers in Cell and Developmental Biology (Frontiers Media SA)-Vol. 9, pp 754134-754134
TL;DR: In this paper, the role of gasdermin E (GSDME) in regulating renal fibrosis and kidney function in various chronic kidney diseases (CKDs) is investigated.
Abstract: Renal fibrosis contributes to kidney dysfunction in various chronic kidney diseases (CKDs). Renal fibrosis can be driven by renal tubular cell death and inflammation. Deletion of gasdermin E (GSDME), an executor of pyroptosis, has been reported to suppress renal tubular cell pyroptosis in several models of kidney injury. However, additional evidence confirming the role of GSDME in regulating renal fibrosis and kidney function in different CKDs is required. In our study, N-GSDME expression was significantly elevated in CKD models in vivo and in vitro. GSDME deletion alleviated renal fibrosis and inflammation in both unilateral ureteral ligation (UUO) and 5/6 nephrectomy (5/6Nx) models along with the attenuation of renal dysfunction. N-GSDME overexpression had a detrimental effect on fibrotic responses in UUO kidneys and TGF-β1-treated renal tubular epithelial cells. In addition, administration of caspase-3 inhibitor Z-DEVD-FMK, which inhibits caspase-3-mediated GSDME cleavage, protected against renal fibrosis both in vivo and in vitro. Collectively, these results provide evidence that the activation of GSDME is critical in regulating both renal fibrosis and kidney dysfunction possibly via promoting inflammatory responses in CKD. These findings may offer new insights into the identification of new therapeutic targets for protecting against CKDs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the relationship between renal fibrosis and ferroptosis was reviewed from the perspective of iron metabolism and lipid peroxidation, and some pharmaceuticals or chemicals associated with both types of diseases were summarized.
Abstract: Renal fibrosis is a common feature of chronic kidney disease (CKD), and can lead to the destruction of normal renal structure and loss of kidney function. Little progress has been made in reversing fibrosis in recent years. Ferroptosis is more immunogenic than apoptosis due to the release and activation of damage-related molecular patterns (DAMPs) signals. In this paper, the relationship between renal fibrosis and ferroptosis was reviewed from the perspective of iron metabolism and lipid peroxidation, and some pharmaceuticals or chemicals associated with both ferroptosis and renal fibrosis were summarized. Other programmed cell death and ferroptosis in renal fibrosis were also firstly reviewed for comparison and further investigation.

10 citations

Journal ArticleDOI
TL;DR: The roles of G SDME-driven programmed cell death in different diseases and the potential targeted therapies of GSDME are introduced to provide a foundation for future research.
Abstract: Gasdermin E (GSDME) is a member of the gasdermin protein family, which mediates programmed cell death including apoptosis and pyroptosis. Recently, it was suggested that GSDME is activated by chemotherapeutic drugs to stimulate pyroptosis of cancer cells and trigger anti-tumor immunity, which is identified as a tumor suppressor. However, GSDME-mediated pyroptosis contributes to normal tissue damage, leading to pathological inflammations. Inhibiting GSDME-mediated pyroptosis might be a potential target in ameliorating inflammatory diseases. Therefore, targeting GSDME is a promising option for the treatment of diseases in the future. In this review, we introduce the roles of GSDME-driven programmed cell death in different diseases and the potential targeted therapies of GSDME, so as to provide a foundation for future research.

6 citations

Journal ArticleDOI
TL;DR: In this article , the authors identify pathways of regulated cell death, including apoptosis and necrosis, as central events in the pathogenesis of various kidney diseases that may be amenable to therapeutic intervention.
Abstract: Disorders of cell number that result from an imbalance between the death of parenchymal cells and the proliferation or recruitment of maladaptive cells contributes to the pathogenesis of kidney disease. Acute kidney injury can result from an acute loss of kidney epithelial cells. In chronic kidney disease, loss of kidney epithelial cells leads to glomerulosclerosis and tubular atrophy, whereas interstitial inflammation and fibrosis result from an excess of leukocytes and myofibroblasts. Other conditions, such as acquired cystic disease and kidney cancer, are characterized by excess numbers of cyst wall and malignant cells, respectively. Cell death modalities act to clear unwanted cells, but disproportionate responses can contribute to the detrimental loss of kidney cells. Indeed, pathways of regulated cell death - including apoptosis and necrosis - have emerged as central events in the pathogenesis of various kidney diseases that may be amenable to therapeutic intervention. Modes of regulated necrosis, such as ferroptosis, necroptosis and pyroptosis may cause kidney injury directly or through the recruitment of immune cells and stimulation of inflammatory responses. Importantly, multiple layers of interconnections exist between different modalities of regulated cell death, including shared triggers, molecular components and protective mechanisms.

5 citations

Posted ContentDOI
01 Mar 2023
TL;DR: In this article , the molecular formula of diosmin was obtained, targets related to Diosmin and renal fibrosis were screened, and interactions among overlapping genes were analyzed, and the expression levels of relevant mRNA were then detected.
Abstract: Abstract Background Interstitial fibrosis is involved in the progression of various chronic kidney diseases and renal failure. Diosmin is a naturally occurring flavonoid glycoside that has antioxidant, anti-inflammatory, and antifibrotic activities. However, whether diosmin protects kidneys by inhibiting renal fibrosis is unknown. Methods The molecular formula of diosmin was obtained, targets related to diosmin and renal fibrosis were screened, and interactions among overlapping genes were analyzed. Overlapping genes wereused for gene function and KEGG pathway enrichment analysis.TGF-β1 was used to induce fibrosis in HK-2 cells, and diosmin treatment was administered. The expression levels of relevant mRNA were then detected. Results Network analysis identified 295 potential target genes for diosmin, 6828 for renal fibrosis, and 150 hub genes. Protein–protein interaction network results showed that CASP3, SRC, ANXA5, MMP9, HSP90AA1, IGF1, RHOA, ESR1, EGFR, and CDC42 were identified as key therapeutic targets. GO analysis revealed that these key targets may be involved in the negative regulation of apoptosis and protein phosphorylation. KEGG indicated that pathways in cancer, MAPK signaling pathway, Ras signaling pathway, PI3K-Akt signaling pathway, andHIF-1 signaling pathway were key pathways for renal fibrosis treatment. Molecular docking results showed that CASP3, ANXA5, MMP9, and HSP90AA1 stably bind to diosmin. Diosmin treatment inhibited the protein and mRNA levels of CASP3, MMP9, ANXA5, and HSP90AA1. Network pharmacology analysis and experimental results suggest that diosmin ameliorates renal fibrosis by decreasing the expression of CASP3, ANXA5, MMP9, and HSP90AA1. Conclusions Diosmin has a potential multi-component, multi-target, and multi-pathway molecular mechanism of action in the treatment of renal fibrosis. CASP3, MMP9, ANXA5, and HSP90AA1 might be the most important direct targets of diosmin.
Journal ArticleDOI
TL;DR: In this article , the molecular formula of diosmin was obtained, targets related to renal fibrosis were screened, and interactions among overlapping genes were analyzed, and the expression levels of relevant mRNA were then detected.
Abstract: Interstitial fibrosis is involved in the progression of various chronic kidney diseases and renal failure. Diosmin is a naturally occurring flavonoid glycoside that has antioxidant, anti-inflammatory, and antifibrotic activities. However, whether diosmin protects kidneys by inhibiting renal fibrosis is unknown.The molecular formula of diosmin was obtained, targets related to diosmin and renal fibrosis were screened, and interactions among overlapping genes were analyzed. Overlapping genes were used for gene function and KEGG pathway enrichment analysis. TGF-β1 was used to induce fibrosis in HK-2 cells, and diosmin treatment was administered. The expression levels of relevant mRNA were then detected.Network analysis identified 295 potential target genes for diosmin, 6828 for renal fibrosis, and 150 hub genes. Protein-protein interaction network results showed that CASP3, SRC, ANXA5, MMP9, HSP90AA1, IGF1, RHOA, ESR1, EGFR, and CDC42 were identified as key therapeutic targets. GO analysis revealed that these key targets may be involved in the negative regulation of apoptosis and protein phosphorylation. KEGG indicated that pathways in cancer, MAPK signaling pathway, Ras signaling pathway, PI3K-Akt signaling pathway, and HIF-1 signaling pathway were key pathways for renal fibrosis treatment. Molecular docking results showed that CASP3, ANXA5, MMP9, and HSP90AA1 stably bind to diosmin. Diosmin treatment inhibited the protein and mRNA levels of CASP3, MMP9, ANXA5, and HSP90AA1. Network pharmacology analysis and experimental results suggest that diosmin ameliorates renal fibrosis by decreasing the expression of CASP3, ANXA5, MMP9, and HSP90AA1.Diosmin has a potential multi-component, multi-target, and multi-pathway molecular mechanism of action in the treatment of renal fibrosis. CASP3, MMP9, ANXA5, and HSP90AA1 might be the most important direct targets of diosmin.
References
More filters
Journal ArticleDOI
29 Oct 2015-Nature
TL;DR: Gasdermin D (Gsdmd) is identified by genome-wide clustered regularly interspaced palindromic repeat-Cas9 nuclease screens of caspase-11- and caspasing-1-mediated pyroptosis in mouse bone marrow macrophages to offer insight into inflammasome-mediated immunity/diseases and change the understanding of pyroPTosis and programmed necrosis.
Abstract: Inflammatory caspases (caspase-1, -4, -5 and -11) are critical for innate defences. Caspase-1 is activated by ligands of various canonical inflammasomes, and caspase-4, -5 and -11 directly recognize bacterial lipopolysaccharide, both of which trigger pyroptosis. Despite the crucial role in immunity and endotoxic shock, the mechanism for pyroptosis induction by inflammatory caspases is unknown. Here we identify gasdermin D (Gsdmd) by genome-wide clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 nuclease screens of caspase-11- and caspase-1-mediated pyroptosis in mouse bone marrow macrophages. GSDMD-deficient cells resisted the induction of pyroptosis by cytosolic lipopolysaccharide and known canonical inflammasome ligands. Interleukin-1β release was also diminished in Gsdmd(-/-) cells, despite intact processing by caspase-1. Caspase-1 and caspase-4/5/11 specifically cleaved the linker between the amino-terminal gasdermin-N and carboxy-terminal gasdermin-C domains in GSDMD, which was required and sufficient for pyroptosis. The cleavage released the intramolecular inhibition on the gasdermin-N domain that showed intrinsic pyroptosis-inducing activity. Other gasdermin family members were not cleaved by inflammatory caspases but shared the autoinhibition; gain-of-function mutations in Gsdma3 that cause alopecia and skin defects disrupted the autoinhibition, allowing its gasdermin-N domain to trigger pyroptosis. These findings offer insight into inflammasome-mediated immunity/diseases and also change our understanding of pyroptosis and programmed necrosis.

3,554 citations

Journal ArticleDOI
06 Jul 2016-PLOS ONE
TL;DR: CKD has a high global prevalence with a consistent estimated global CKD prevalence of between 11 to 13% with the majority stage 3, and future research should evaluate intervention strategies deliverable at scale to delay the progression of CKD and improve CVD outcomes.
Abstract: © 2016 Hill et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Chronic kidney disease (CKD) is a global health burden with a high economic cost to health systems and is an independent risk factor for cardiovascular disease (CVD). All stages of CKD are associated with increased risks of cardiovascular morbidity, premature mortality, and/or decreased quality of life. CKD is usually asymptomatic until later stages and accurate prevalence data are lacking. Thus we sought to determine the prevalence of CKD globally, by stage, geographical location, gender and age. A systematic review and meta-analysis of observational studies estimating CKD prevalence in general populations was conducted through literature searches in 8 databases. We assessed pooled data using a random effects model. Of 5,842 potential articles, 100 studies of diverse quality were included, comprising 6,908,440 patients. Global mean(95%CI) CKD prevalence of 5 stages 13.4%(11.7-15.1%), and stages 3-5 was 10.6%(9.2-12.2%). Weighting by study quality did not affect prevalence estimates. CKD prevalence by stage was Stage-1 (eGFR>90+ACR>30): 3.5% (2.8-4.2%); Stage-2 (eGFR 60-89+ACR>30): 3.9% (2.7-5.3%); Stage-3 (eGFR 30-59): 7.6% (6.4-8.9%); Stage-4 = (eGFR 29-15): 0.4% (0.3-0.5%); and Stage-5 (eGFR<15): 0.1% (0.1-0.1%). CKD has a high global prevalence with a consistent estimated global CKD prevalence of between 11 to 13% with the majority stage 3. Future research should evaluate intervention strategies deliverable at scale to delay the progression of CKD and improve CVD outcomes.

2,321 citations

Journal ArticleDOI
07 Jul 2016-Nature
TL;DR: It is demonstrated that the liposome-leakage and pore-forming activities of the gasdermin-N domain are required for pyroptosis and provide insights into the roles of theGasdermin family in necrosis, immunity and diseases.
Abstract: The N-terminal domains of gasdermin proteins cause pyroptotic cell death by oligomerizing to form membrane pores.

1,567 citations

Journal ArticleDOI
01 May 2017-Nature
TL;DR: It is shown that GSDME, which was originally identified as DFNA5 (deafness, autosomal dominant 5), can switch caspase-3-mediated apoptosis induced by TNF or chemotherapy drugs to pyroptosis, suggesting that casp enzyme activation can trigger necrosis by cleaving G SDME and offer new insights into cancer chemotherapy.
Abstract: Pyroptosis is a form of cell death that is critical for immunity. It can be induced by the canonical caspase-1 inflammasomes or by activation of caspase-4, -5 and -11 by cytosolic lipopolysaccharide. The caspases cleave gasdermin D (GSDMD) in its middle linker to release autoinhibition on its gasdermin-N domain, which executes pyroptosis via its pore-forming activity. GSDMD belongs to a gasdermin family that shares the pore-forming domain. The functions and mechanisms of activation of other gasdermins are unknown. Here we show that GSDME, which was originally identified as DFNA5 (deafness, autosomal dominant 5), can switch caspase-3-mediated apoptosis induced by TNF or chemotherapy drugs to pyroptosis. GSDME was specifically cleaved by caspase-3 in its linker, generating a GSDME-N fragment that perforates membranes and thereby induces pyroptosis. After chemotherapy, cleavage of GSDME by caspase-3 induced pyroptosis in certain GSDME-expressing cancer cells. GSDME was silenced in most cancer cells but expressed in many normal tissues. Human primary cells exhibited GSDME-dependent pyroptosis upon activation of caspase-3 by chemotherapy drugs. Gsdme-/- (also known as Dfna5-/-) mice were protected from chemotherapy-induced tissue damage and weight loss. These findings suggest that caspase-3 activation can trigger necrosis by cleaving GSDME and offer new insights into cancer chemotherapy.

1,458 citations

Journal ArticleDOI
TL;DR: The 2006 KDIGO Controversies Conference on CKD was convened to consider six major topics: CKD classification, CKD screening and surveillance, public policy for CKD, CVD and CVD risk factors as risk factors for development and progression of CKd, association of CKD with chronic infections, and (6) association of CJD with cancer.

1,316 citations