scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Gate Control of Spin-Orbit Interaction in an Inverted I n 0.53 G a 0.47 As/I n 0.52 A l 0.48 As Heterostructure

17 Feb 1997-Physical Review Letters (American Physical Society)-Vol. 78, Iss: 7, pp 1335-1338
TL;DR: In this article, the spin-orbit interaction in an inverted I${\mathrm{n}}_{0.53}$G${a}}{0.48}$As quantum well can be controlled by applying a gate voltage.
Abstract: We have confirmed that a spin-orbit interaction in an inverted I${\mathrm{n}}_{0.53}$G${\mathrm{a}}_{0.47}$As/I${\mathrm{n}}_{0.52}$A${\mathrm{l}}_{0.48}$As quantum well can be controlled by applying a gate voltage. This result shows that the spin-orbit interaction of a two-dimensional electron gas depends on the surface electric field. The dominant mechanism for the change in the spin-orbit interaction parameter can be attributed to the Rashba term. This inverted I${\mathrm{n}}_{0.53}$G${\mathrm{a}}_{0.47}$As/I${\mathrm{n}}_{0.52}$A${\mathrm{l}}_{0.48}$As heterostructure is one of the promising materials for the spin-polarized field effect transistor which is proposed by Datta and Das [Appl. Phys. Lett. 56, 665 (1990)].
Citations
More filters
Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent advances in the condensed matter search for Majorana fermions is presented, which has led many in the field to believe that this quest may soon bear fruit.
Abstract: The 1937 theoretical discovery of Majorana fermions-whose defining property is that they are their own anti-particles-has since impacted diverse problems ranging from neutrino physics and dark matter searches to the fractional quantum Hall effect and superconductivity. Despite this long history the unambiguous observation of Majorana fermions nevertheless remains an outstanding goal. This review paper highlights recent advances in the condensed matter search for Majorana that have led many in the field to believe that this quest may soon bear fruit. We begin by introducing in some detail exotic 'topological' one- and two-dimensional superconductors that support Majorana fermions at their boundaries and at vortices. We then turn to one of the key insights that arose during the past few years; namely, that it is possible to 'engineer' such exotic superconductors in the laboratory by forming appropriate heterostructures with ordinary s-wave superconductors. Numerous proposals of this type are discussed, based on diverse materials such as topological insulators, conventional semiconductors, ferromagnetic metals and many others. The all-important question of how one experimentally detects Majorana fermions in these setups is then addressed. We focus on three classes of measurements that provide smoking-gun Majorana signatures: tunneling, Josephson effects and interferometry. Finally, we discuss the most remarkable properties of condensed matter Majorana fermions-the non-Abelian exchange statistics that they generate and their associated potential for quantum computation.

2,156 citations

Journal ArticleDOI
10 Dec 2004-Science
TL;DR: In this paper, the authors detected and imaged electron-spin polarization near the edges of a semiconductor channel with the use of Kerr rotation microscopy, consistent with the predictions of the spin Hall effect.
Abstract: Electrically induced electron-spin polarization near the edges of a semiconductor channel was detected and imaged with the use of Kerr rotation microscopy The polarization is out-of-plane and has opposite sign for the two edges, consistent with the predictions of the spin Hall effect Measurements of unstrained gallium arsenide and strained indium gallium arsenide samples reveal that strain modifies spin accumulation at zero magnetic field A weak dependence on crystal orientation for the strained samples suggests that the mechanism is the extrinsic spin Hall effect

1,999 citations

Journal ArticleDOI
TL;DR: Bychkov and Rashba as discussed by the authors introduced a simple form of spin-orbit coupling to explain the peculiarities of electron spin resonance in two-dimensional semiconductors, which has inspired a vast number of predictions, discoveries and innovative concepts far beyond semiconductor devices.
Abstract: In 1984, Bychkov and Rashba introduced a simple form of spin-orbit coupling to explain the peculiarities of electron spin resonance in two-dimensional semiconductors. Over the past 30 years, Rashba spin-orbit coupling has inspired a vast number of predictions, discoveries and innovative concepts far beyond semiconductors. The past decade has been particularly creative, with the realizations of manipulating spin orientation by moving electrons in space, controlling electron trajectories using spin as a steering wheel, and the discovery of new topological classes of materials. This progress has reinvigorated the interest of physicists and materials scientists in the development of inversion asymmetric structures, ranging from layered graphene-like materials to cold atoms. This Review discusses relevant recent and ongoing realizations of Rashba physics in condensed matter.

1,533 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on advances towards the development of hybrid devices that can perform logic, communications and storage within the same materials technology, and take advantage of spin coherence to sidestep some limitations on information manipulation.
Abstract: High-volume information-processing and communications devices are at present based on semiconductor devices, whereas information-storage devices rely on multilayers of magnetic metals and insulators. Switching within information-processing devices is performed by the controlled motion of small pools of charge, whereas in the magnetic storage devices information storage and retrieval is performed by reorienting magnetic domains (although charge motion is often used for the final stage of readout). Semiconductor spintronics offers a possible direction towards the development of hybrid devices that could perform all three of these operations, logic, communications and storage, within the same materials technology. By taking advantage of spin coherence it also may sidestep some limitations on information manipulation previously thought to be fundamental. This article focuses on advances towards these goals in the past decade, during which experimental progress has been extraordinary.

1,444 citations