scispace - formally typeset
Open AccessJournal ArticleDOI

Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression

Reads0
Chats0
TLDR
GRNs are discussed and their topological properties in relation to transcriptional and phenotypic outputs in development and organismal physiology and their relationships to phenotypesic robustness and variability.
Abstract
In any given cell, thousands of genes are expressed and work in concert to ensure the cell's function, fitness, and survival. Each gene, in turn, must be expressed at the proper time and in the proper amounts to ensure the appropriate functional outcome. The regulation and expression of some genes are highly robust; their expression is controlled by invariable expression programs. For instance, developmental gene expression is extremely similar in a given cell type from one individual to another. The expression of other genes is more variable: Their levels are noisy and are different from cell to cell and from individual to individual. This can be highly beneficial in physiological responses to outside cues and stresses. Recent advances have enabled the analysis of differential gene expression at a systems level. Gene regulatory networks (GRNs) involving interactions between large numbers of genes and their regulators have been mapped onto graphic diagrams that are used to visualize the regulatory relationships. The further characterization of GRNs has already uncovered global principles of gene regulation. Together with synthetic network biology, such studies are starting to provide insights into the transcriptional mechanisms that cause robust versus stochastic gene expression and their relationships to phenotypic robustness and variability. Here, we discuss GRNs and their topological properties in relation to transcriptional and phenotypic outputs in development and organismal physiology.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Evolution of Gene Duplication in Plants.

TL;DR: This review surveys the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication.
Journal ArticleDOI

Molecular Biology of Atherosclerosis

TL;DR: Key signaling pathways are presented to provide a context for the gene manipulations summarized herein and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Journal ArticleDOI

miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology.

TL;DR: The miRNet 2.0 as mentioned in this paper is an easy-to-use web-based platform designed to help elucidate microRNA functions by integrating users' data with existing knowledge via network-based visual analytics.
Journal ArticleDOI

Transition states and cell fate decisions in epigenetic landscapes

TL;DR: Here, focusing strictly on the fate decision events, it is suggested that fate transitions occur in a discontinuous, stochastic manner whereby signals modulate the probability of the transition events.
References
More filters
Journal ArticleDOI

Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks

TL;DR: Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.
Journal ArticleDOI

Network Motifs: Simple Building Blocks of Complex Networks

TL;DR: Network motifs, patterns of interconnections occurring in complex networks at numbers that are significantly higher than those in randomized networks, are defined and may define universal classes of networks.
Journal ArticleDOI

Genomic expression programs in the response of yeast cells to environmental changes.

TL;DR: Analysis of genomic expression patterns in the yeast Saccharomyces cerevisiae implicated the transcription factors Yap1p, as well as Msn2p and Msn4p, in mediating specific features of the transcriptional response, while the identification of novel sequence elements provided clues to novel regulators.
Journal ArticleDOI

Core transcriptional regulatory circuitry in human embryonic stem cells.

TL;DR: Insight is provided into the transcriptional regulation of stem cells and how OCT4, SOX2, and NANOG contribute to pluripotency and self-renewal and how they collaborate to form regulatory circuitry consisting of autoregulatory and feedforward loops.
Journal ArticleDOI

Functional profiling of the Saccharomyces cerevisiae genome.

Guri Giaever, +72 more
- 25 Jul 2002 - 
TL;DR: It is shown that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment, and less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal Growth in four of the tested conditions.
Related Papers (5)