scispace - formally typeset
Search or ask a question
Journal ArticleDOI

General atomic and molecular electronic structure system

TL;DR: A description of the ab initio quantum chemistry package GAMESS, which can be treated with wave functions ranging from the simplest closed‐shell case up to a general MCSCF case, permitting calculations at the necessary level of sophistication.
Abstract: A description of the ab initio quantum chemistry package GAMESS is presented. Chemical systems containing atoms through radon can be treated with wave functions ranging from the simplest closed-shell case up to a general MCSCF case, permitting calculations at the necessary level of sophistication. Emphasis is given to novel features of the program. The parallelization strategy used in the RHF, ROHF, UHF, and GVB sections of the program is described, and detailed speecup results are given. Parallel calculations can be run on ordinary workstations as well as dedicated parallel machines. © John Wiley & Sons, Inc.
Citations
More filters
Journal ArticleDOI
TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Abstract: QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

19,985 citations

Journal ArticleDOI
TL;DR: Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn, a multifunctional program for wavefunction analysis.
Abstract: Multiwfn is a multifunctional program for wavefunction analysis. Its main functions are: (1) Calculating and visualizing real space function, such as electrostatic potential and electron localization function at point, in a line, in a plane or in a spatial scope. (2) Population analysis. (3) Bond order analysis. (4) Orbital composition analysis. (5) Plot density-of-states and spectrum. (6) Topology analysis for electron density. Some other useful utilities involved in quantum chemistry studies are also provided. The built-in graph module enables the results of wavefunction analysis to be plotted directly or exported to high-quality graphic file. The program interface is very user-friendly and suitable for both research and teaching purpose. The code of Multiwfn is substantially optimized and parallelized. Its efficiency is demonstrated to be significantly higher than related programs with the same functions. Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn. The program is free of charge and open-source. Its precompiled file and source codes are available from http://multiwfn.codeplex.com.

17,273 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

Journal ArticleDOI
TL;DR: Quantum ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Abstract: Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). Quantum ESPRESSO stands for "opEn Source Package for Research in Electronic Structure, Simulation, and Optimization". It is freely available to researchers around the world under the terms of the GNU General Public License. Quantum ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively-parallel architectures, and a great effort being devoted to user friendliness. Quantum ESPRESSO is evolving towards a distribution of independent and inter-operable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

13,052 citations

Journal ArticleDOI
TL;DR: The SMD model may be employed with other algorithms for solving the nonhomogeneous Poisson equation for continuum solvation calculations in which the solute is represented by its electron density in real space, including, for example, the conductor-like screening algorithm.
Abstract: We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the “D” stands for “density” to denote that the full solute electron density is used without defining partial atomic charges. “Continuum” denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute−solvent boundary. SMD is a universal solvation model, where “universal” denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonho...

10,945 citations

References
More filters
Book
01 Jan 1990
TL;DR: In this article, the quantum atom and the topology of the charge desnity of a quantum atom are discussed, as well as the mechanics of an atom in a molecule.
Abstract: List of symbols 1. Atoms in chemistry 2. Atoms and the topology of the charge desnity 3. Molecular structure and its change 4. Mathematical models of structural change 5. The quantum atom 6. The mechanics of an atom in a molecule 7. Chemical models and the Laplacian of the charge density 8. The action principle for a quantunm subsystem Appendix - Tables of data Index

11,853 citations

Journal ArticleDOI
TL;DR: In this paper, an analysis in quantitative form is given in terms of breakdowns of the electronic population into partial and total ''gross atomic populations'' and ''overlap populations'' for molecules.
Abstract: With increasing availability of good all‐electron LCAO MO (LCAO molecular orbital) wave functions for molecules, a systematic procedure for obtaining maximum insight from such data has become desirable. An analysis in quantitative form is given here in terms of breakdowns of the electronic population into partial and total ``gross atomic populations,'' or into partial and total ``net atomic populations'' together with ``overlap populations.'' ``Gross atomic populations'' distribute the electrons almost perfectly among the various AOs (atomic orbitals) of the various atoms in the molecule. From these numbers, a definite figure is obtained for the amount of promotion (e.g., from 2s to 2p) in each atom; and also for the gross charge Q on each atom if the bonds are polar. The total overlap population for any pair of atoms in a molecule is in general made up of positive and negative contributions. If the total overlap population between two atoms is positive, they are bonded; if negative, they are antibonded. Tables of gross atomic populations and overlap populations, also gross atomic charges Q, computed from SCF (self‐consistent field) LCAO‐MO data on CO and H2O, are given. The amount of s‐p promotion is found to be nearly the same for the O atom in CO and in H2O (0.14 electron in CO and 0.15e in H2O). For the C atom in CO it is 0.50e. For the N atom in N2 it is 0.26e according to calculations by Scherr. In spite of very strong polarity in the π bonds in CO, the σ and π overlap populations are very similar to those in N2. In CO the total overlap population for the π electrons is about twice that for the σ electrons. The most easily ionized electrons of CO are in an MO such that its gross atomic population is 94% localized on the carbon atom; these electrons account for the (weak) electron donor properties of CO. A comparison between changes of bond lengths observed on removal of an electron from one or another MO of CO and H2, and corresponding changes in computed overlap populations, shows good correlation. Several other points of interest are discussed.

9,238 citations

Journal ArticleDOI
TL;DR: TURBOMOLE as discussed by the authors is a program system for SCF that takes full advantage of all discrete point group symmetries and has only modest I/O and background storage requirements.

7,616 citations

Journal ArticleDOI
TL;DR: In this article, the authors extended their previous algorithm for following reaction paths downhill to use mass-weighted internal coordinates, which has the correct tangent vector and curvature vectors in the limit or small step size but requires only the transition vector and the energy gradients.
Abstract: Our previous algorithm for following reaction paths downhill (J. Chem. Phys. 1989, 90, 2154), has been extended to use mass-weighted internal coordinates. Points on the reaction path are round by constrained optimizations involving the internal degrees or freedom or the molecule. The points are optimized so that the segment or the reaction path between any two adjacent points is described by an arc or a circle in mass-weighted internal coordinates, and so that the gradients (in mass-weighted internals) at the end points or the arc are tangent to the path. The algorithm has the correct tangent vector and curvature vectors in the limit or small step size but requires only the transition vector and the energy gradients; the resulting path is continuous, differentiable, and piecewise quadratic

5,291 citations