scispace - formally typeset
Search or ask a question
Journal ArticleDOI

General Limitations to Endophytic Entomopathogenic Fungi Use as Plant Growth Promoters, Pests and Pathogens Biocontrol Agents.

TL;DR: The potential application of fungal endophytes as alternative to inorganic fertilizers for crop improvement has often been proposed as discussed by the authors, and various strains of insect pathogenic fungi have been formulated for use as mycopesticides and have been suggested as long-term replacement for the synthetic pesticides that are commonly in use.
Abstract: The multiple roles of fungal entomopathogens in host plants’ growth promotion, pest and pathogen management have drawn huge attention for investigation. Endophytic species are known to influence various activities of their associated host plants, and the endophyte-colonized plants have been demonstrated to gain huge benefits from these symbiotic associations. The potential application of fungal endophytes as alternative to inorganic fertilizers for crop improvement has often been proposed. Similarly, various strains of insect pathogenic fungi have been formulated for use as mycopesticides and have been suggested as long-term replacement for the synthetic pesticides that are commonly in use. The numerous concerns about the negative effects of synthetic chemical pesticides have also driven attention towards developing eco-friendly pest management techniques. However, several factors have been underlined to be militating the successful adoption of entomopathogenic fungi and fungal endophytes as plant promoting, pests and diseases control bio-agents. The difficulties in isolation and characterization of novel strains, negative effects of geographical location, vegetation type and human disturbance on fungal entomopathogens, are among the numerous setbacks that have been documented. Although, the latest advances in biotechnology and microbial studies have provided means of overcoming many of these problems. For instance, studies have suggested measures for mitigating the negative effects of biotic and abiotic stressors on entomopathogenic fungi in inundative application on the field, or when applied in the form of fungal endophytes. In spite of these efforts, more studies are needed to be done to achieve the goal of improving the overall effectiveness and increase in the level of acceptance of entomopathogenic fungi and their products as an integral part of the integrated pest management programs, as well as potential adoption as an alternative to inorganic fertilizers and pesticides.
Citations
More filters
Journal ArticleDOI
TL;DR: Entomopathogenic fungi are a special group of soil-dwelling microorganisms that infects and kills insects and other arthropods through cuticle penetration as discussed by the authors , and are currently used as biocontrol agents against insect plant pests.
Abstract: Entomopathogenic fungi are a special group of soil-dwelling microorganisms that infects and kills insects and other arthropods through cuticle penetration. They are currently used as biocontrol agents against insect plant pests and play a vital role in their management. Regardless that entomopathogenic fungi are currently on the agriculture market, their full potential has not yet been utterly explored. Up to date substantial research has covered the topic revealing numerous uses in pest management but also on their ability as endophytes, assisting the plant host on growth and pathogen resistance. This article addresses the literature on entomopathogenic fungi through the years, noting their mode of action, advantages, potential applications, and prospects.

13 citations

Journal ArticleDOI
13 Jul 2022-Forests
TL;DR: In this article , the authors studied the species diversity of culturable endophytic fungi in the leaves and twigs of symptomatic and asymptomatic Fraxinus excelsior trees.
Abstract: The species diversity of culturable endophytic fungi was studied in the leaves and twigs of symptomatic and asymptomatic Fraxinus excelsior trees. Endophytic mycobiota was dominated by Ascomycota species, with Pleosporales (44.17%) and Diaporthales (23.79%) endophytes being the most frequently observed in the tree samples. The number of endophytic isolates and species richness varied depending on the sampling date (May and October) and tissue location. Of the 54 species identified based on ITS sequences, 14 were classified as dominant. The most frequently isolated species were Diaporthe eres, followed by Alternaria alternata, Dothiorella gregaria, and Fraxinicola fraxini. The inhibitory effect of 41 species (75 isolates) of endophytes on the radial growth of a Hymenoscyphus fraxineus isolate was studied under in vitro conditions (dual cultures). The radial growth of H. fraxineus was the most inhibited by four endophytic fungi from twigs (Fusarium lateritium, Didymella aliena, Didymella macrostoma, and Dothiorella gregaria). The inhibitory effect of the four isolates was also studied under in planta conditions. The isolates artificially inoculated into the trunks of ash trees reduced the length of necroses formed by H. fraxineus co-inoculated in the same trunks. This effect depended on the isolate, and the inhibition was most prominent only on trunks inoculated with F. lateritium and D. aliena. Although the total length of necrotic lesions formed by the H. fraxineus infection was shorter in the ash trunks co-inoculated with the endophytes, the difference was not significant.

4 citations

Journal ArticleDOI
TL;DR: In this paper , the use of chemical insecticides in agriculture has posed several challenges to environment and ecosystem health. Pesticides of biological origin are considered to be suitable for sustainable environment.

4 citations

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the level of fungistasis toward Metarhizium robertsii and Beauveria bassiana in soils of conventional potato fields and kitchen potato gardens.
Abstract: Entomopathogenic fungi can be inhibited by different soil microorganisms, but the effect of a soil microbiota on fungal growth, survival, and infectivity toward insects is insufficiently understood. We investigated the level of fungistasis toward Metarhizium robertsii and Beauveria bassiana in soils of conventional potato fields and kitchen potato gardens. Agar diffusion methods, 16S rDNA metabarcoding, bacterial DNA quantification, and assays of Leptinotarsa decemlineata survival in soils inoculated with fungal conidia were used. Soils of kitchen gardens showed stronger fungistasis toward M. robertsii and B. bassiana and at the same time the highest density of the fungi compared to soils of conventional fields. The fungistasis level depended on the quantity of bacterial DNA and relative abundance of Bacillus, Streptomyces, and some Proteobacteria, whose abundance levels were the highest in kitchen garden soils. Cultivable isolates of bacilli exhibited antagonism to both fungi in vitro. Assays involving inoculation of nonsterile soils with B. bassiana conidia showed trends toward elevated mortality of L. decemlineata in highly fungistatic soils compared to low-fungistasis ones. Introduction of antagonistic bacilli into sterile soil did not significantly change infectivity of B. bassiana toward the insect. The results support the idea that entomopathogenic fungi can infect insects within a hypogean habitat despite high abundance and diversity of soil antagonistic bacteria.
Journal ArticleDOI
TL;DR: In this paper , 14 actin-depolymerizing factors (ADF) genes were identified and characterized in the Citrus sinensis genome and their expression in response to endophytic colonization were analyzed.
References
More filters
Journal ArticleDOI
TL;DR: This review addresses the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.
Abstract: All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.

1,677 citations

Journal ArticleDOI
TL;DR: The number of known species of fungi is estimated as at least 74 K, but could be as much as 120 K with allowances for ‘orphaned’ species as discussed by the authors, which is the current working hypothesis for the number of fungi on Earth.

1,444 citations

Journal ArticleDOI
TL;DR: It is hypothesized that the endophytes, in contrast to known pathogens, generally have far greater phenotypic plasticity and thus more options than pathogens: infection, local but also extensive colonisation, latency, virulence, pathogenity and (or) saprophytism.

1,323 citations

Journal ArticleDOI
TL;DR: Although viruses cause serious problems in potatoes and sugar beets in some areas, worldwide losses due to viruses averaged 6–7% on these crops and overall, weeds had the highest loss potential with animal pests and pathogens being less important.

1,168 citations

Journal ArticleDOI
TL;DR: An updated, comprehensive list of mycoinsecticides and mycoacaricides developed worldwide since the 1960s, with a total of 171 products claimed to control acarines (mites and ticks) in at least 4 families.

1,163 citations

Trending Questions (1)
How to formulate fungal endophytes as biological control agents or biofertilizers?

The paper discusses the potential application of fungal endophytes as alternative to inorganic fertilizers for crop improvement and as mycopesticides for pest management.