scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Generalized Inverse of Matrices and Its Applications

01 Feb 1973-Technometrics (Taylor & Francis Group)-Vol. 15, Iss: 1, pp 197-197
TL;DR: In this article, the generalized inverse of matrices and its applications are discussed and discussed in terms of generalized inverse of matrix and its application in the context of generalization of matrix matrices.
Abstract: (1973). Generalized Inverse of Matrices and Its Applications. Technometrics: Vol. 15, No. 1, pp. 197-197.
Citations
More filters
Journal ArticleDOI
TL;DR: A new learning algorithm called ELM is proposed for feedforward neural networks (SLFNs) which randomly chooses hidden nodes and analytically determines the output weights of SLFNs which tends to provide good generalization performance at extremely fast learning speed.

10,217 citations

Journal ArticleDOI
TL;DR: In this article, the authors propose simple and directional likelihood-ratio tests for discriminating and choosing between two competing models whether the models are nonnested, overlapping or nested and whether both, one, or neither is misspecified.
Abstract: In this paper, we propose a classical approach to model selection. Using the Kullback-Leibler Information measure, we propose simple and directional likelihood-ratio tests for discriminating and choosing between two competing models whether the models are nonnested, overlapping or nested and whether both, one, or neither is misspecified. As a prerequisite, we fully characterize the asymptotic distribution of the likelihood ratio statistic under the most general conditions.

5,661 citations

Journal ArticleDOI
01 Apr 2012
TL;DR: ELM provides a unified learning platform with a widespread type of feature mappings and can be applied in regression and multiclass classification applications directly and in theory, ELM can approximate any target continuous function and classify any disjoint regions.
Abstract: Due to the simplicity of their implementations, least square support vector machine (LS-SVM) and proximal support vector machine (PSVM) have been widely used in binary classification applications. The conventional LS-SVM and PSVM cannot be used in regression and multiclass classification applications directly, although variants of LS-SVM and PSVM have been proposed to handle such cases. This paper shows that both LS-SVM and PSVM can be simplified further and a unified learning framework of LS-SVM, PSVM, and other regularization algorithms referred to extreme learning machine (ELM) can be built. ELM works for the “generalized” single-hidden-layer feedforward networks (SLFNs), but the hidden layer (or called feature mapping) in ELM need not be tuned. Such SLFNs include but are not limited to SVM, polynomial network, and the conventional feedforward neural networks. This paper shows the following: 1) ELM provides a unified learning platform with a widespread type of feature mappings and can be applied in regression and multiclass classification applications directly; 2) from the optimization method point of view, ELM has milder optimization constraints compared to LS-SVM and PSVM; 3) in theory, compared to ELM, LS-SVM and PSVM achieve suboptimal solutions and require higher computational complexity; and 4) in theory, ELM can approximate any target continuous function and classify any disjoint regions. As verified by the simulation results, ELM tends to have better scalability and achieve similar (for regression and binary class cases) or much better (for multiclass cases) generalization performance at much faster learning speed (up to thousands times) than traditional SVM and LS-SVM.

4,835 citations

Book
01 Feb 2006
TL;DR: Wavelet analysis of finite energy signals and random variables and stochastic processes, analysis and synthesis of long memory processes, and the wavelet variance.
Abstract: 1. Introduction to wavelets 2. Review of Fourier theory and filters 3. Orthonormal transforms of time series 4. The discrete wavelet transform 5. The maximal overlap discrete wavelet transform 6. The discrete wavelet packet transform 7. Random variables and stochastic processes 8. The wavelet variance 9. Analysis and synthesis of long memory processes 10. Wavelet-based signal estimation 11. Wavelet analysis of finite energy signals Appendix. Answers to embedded exercises References Author index Subject index.

2,734 citations

Journal ArticleDOI
TL;DR: The results show that the OS-ELM is faster than the other sequential algorithms and produces better generalization performance on benchmark problems drawn from the regression, classification and time series prediction areas.
Abstract: In this paper, we develop an online sequential learning algorithm for single hidden layer feedforward networks (SLFNs) with additive or radial basis function (RBF) hidden nodes in a unified framework. The algorithm is referred to as online sequential extreme learning machine (OS-ELM) and can learn data one-by-one or chunk-by-chunk (a block of data) with fixed or varying chunk size. The activation functions for additive nodes in OS-ELM can be any bounded nonconstant piecewise continuous functions and the activation functions for RBF nodes can be any integrable piecewise continuous functions. In OS-ELM, the parameters of hidden nodes (the input weights and biases of additive nodes or the centers and impact factors of RBF nodes) are randomly selected and the output weights are analytically determined based on the sequentially arriving data. The algorithm uses the ideas of ELM of Huang developed for batch learning which has been shown to be extremely fast with generalization performance better than other batch training methods. Apart from selecting the number of hidden nodes, no other control parameters have to be manually chosen. Detailed performance comparison of OS-ELM is done with other popular sequential learning algorithms on benchmark problems drawn from the regression, classification and time series prediction areas. The results show that the OS-ELM is faster than the other sequential algorithms and produces better generalization performance

1,800 citations


Cites methods from "Generalized Inverse of Matrices and..."

  • ...where is the Moore–Penrose generalized inverse [29] of the hidden layer output matrix . There are several ways to calculate the Moore–Penrose generalized inverse of a matrix, including orthogonal projection method, orthogonalization method, iterative method, and singular value decomposition (SVD) [ 29 ]....

    [...]

  • ...where is the Moore–Penrose generalized inverse [ 29 ] of the hidden layer output matrix . There are several ways to calculate the Moore–Penrose generalized inverse of a matrix, including orthogonal projection method, orthogonalization method, iterative method, and singular value decomposition (SVD) [29]....

    [...]