scispace - formally typeset
Journal ArticleDOI

Generalized synthesis of periodic surfactant/inorganic composite materials

Reads0
Chats0
TLDR
In this article, a generalized approach to the synthesis of periodic mesophases of metal oxides and cationic or anionic surfactants under a range of pH conditions is presented.
Abstract
THE recent synthesis of silica-based mesoporous materials1,2 by the cooperative assembly of periodic inorganic and surfactant-based structures has attracted great interest because it extends the range of molecular-sieve materials into the very-large-pore regime. If the synthetic approach can be generalized to transition-metal oxide mesostructures, the resulting nanocomposite materials might find applications in electrochromic or solid-electrolyte devices3,4, as high-surface-area redox catalysts5 and as substrates for biochemical separations. We have proposed recently6 that the matching of charge density at the surfactant/inorganic interfaces governs the assembly process; such co-organization of organic and inorganic phases is thought to be a key aspect of biomineralization7. Here we report a generalized approach to the synthesis of periodic mesophases of metal oxides and cationic or anionic surfactants under a range of pH conditions. We suggest that the assembly process is controlled by electrostatic complementarity between the inorganic ions in solution, the charged surfactant head groups and—when these charges both have the same sign—inorganic counterions. We identify a number of different general strategies for obtaining a variety of ordered composite materials.

read more

Citations
More filters
Journal ArticleDOI

Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores

TL;DR: Use of amphiphilic triblock copolymers to direct the organization of polymerizing silica species has resulted in the preparation of well-ordered hexagonal mesoporous silica structures (SBA-15) with uniform pore sizes up to approximately 300 angstroms.
Journal ArticleDOI

Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures

TL;DR: In this paper, a family of highly ordered mesoporous (20−300 A) structures have been synthesized by the use of commercially available nonionic alkyl poly(ethylene oxide) (PEO) oligomeric surfactants and poly(alkylene oxide) block copolymers in acid media.
Journal ArticleDOI

From Microporous to Mesoporous Molecular-Sieve Materials and Their Use in Catalysis

TL;DR: Corma et al. as mentioned in this paper used the Dupont Award on new materials (1995), and the Spanish National Award “Leonardo Torres Quevedo” on Technology Research (1996) on technology research (1996), to recognize the performance of zeolites as catalysts for oil refining and petrochemistry.
Journal ArticleDOI

Ordered porous materials for emerging applications

TL;DR: The past decade has seen significant advances in the ability to fabricate new porous solids with ordered structures from a wide range of different materials, which has resulted in materials with unusual properties and broadened their application range beyond the traditional use as catalysts and adsorbents.
Journal ArticleDOI

Silica-based mesoporous organic-inorganic hybrid materials.

TL;DR: An overview of the preparation, properties, and potential applications of mesoporous organic-inorganic hybrid materials in the areas of catalysis, sorption, chromatography, and the construction of systems for controlled release of active compounds, as well as molecular switches, are given.
References
More filters
Journal ArticleDOI

Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism

TL;DR: In this paper, the synthesis of mesoporous inorganic solids from calcination of aluminosilicate gels in the presence of surfactants is described, in which the silicate material forms inorganic walls between ordered surfactant micelles.
Journal ArticleDOI

A new family of mesoporous molecular sieves prepared with liquid crystal templates

TL;DR: In this paper, the synthesis, characterization, and proposed mechanism of formation of a new family of silicatelaluminosilicate mesoporous molecular sieves designated as M41S is described.
Book

Surfactants and Interfacial Phenomena

TL;DR: In this paper, the Gibbs equation is used to calculate the area per Molecule at the interface by using the Gibbs Equation (GEE) of the Gibbs equilibrium. But the Gibbs equations are not applicable to surface-active agents.

The Chemistry of Silica

Kr Iler
Book

Hydrolysis of Cations

Related Papers (5)