scispace - formally typeset
Open accessPosted Content

Generating Images with Sparse Representations

Abstract: The high dimensionality of images presents architecture and sampling-efficiency challenges for likelihood-based generative models. Previous approaches such as VQ-VAE use deep autoencoders to obtain compact representations, which are more practical as inputs for likelihood-based models. We present an alternative approach, inspired by common image compression methods like JPEG, and convert images to quantized discrete cosine transform (DCT) blocks, which are represented sparsely as a sequence of DCT channel, spatial location, and DCT coefficient triples. We propose a Transformer-based autoregressive architecture, which is trained to sequentially predict the conditional distribution of the next element in such sequences, and which scales effectively to high resolution images. On a range of image datasets, we demonstrate that our approach can generate high quality, diverse images, with sample metric scores competitive with state of the art methods. We additionally show that simple modifications to our method yield effective image colorization and super-resolution models.

... read more

Topics: Discrete cosine transform (57%), JPEG (57%), Image compression (54%) ... read more
Citations
  More

8 results found


Open accessPosted Content
Prafulla Dhariwal1, Alex Nichol1Institutions (1)
11 May 2021-arXiv: Learning
Abstract: We show that diffusion models can achieve image sample quality superior to the current state-of-the-art generative models. We achieve this on unconditional image synthesis by finding a better architecture through a series of ablations. For conditional image synthesis, we further improve sample quality with classifier guidance: a simple, compute-efficient method for trading off diversity for fidelity using gradients from a classifier. We achieve an FID of 2.97 on ImageNet 128$\times$128, 4.59 on ImageNet 256$\times$256, and 7.72 on ImageNet 512$\times$512, and we match BigGAN-deep even with as few as 25 forward passes per sample, all while maintaining better coverage of the distribution. Finally, we find that classifier guidance combines well with upsampling diffusion models, further improving FID to 3.94 on ImageNet 256$\times$256 and 3.85 on ImageNet 512$\times$512. We release our code at this https URL

... read more

Topics: Upsampling (50%)

44 Citations


Open accessPosted Content
17 Mar 2021-arXiv: Learning
Abstract: This work is an update of a previous paper on the same topic published a few years ago. With the dramatic progress in generative modeling, a suite of new quantitative and qualitative techniques to evaluate models has emerged. Although some measures such as Inception Score, Frechet Inception Distance, Precision-Recall, and Perceptual Path Length are relatively more popular, GAN evaluation is not a settled issue and there is still room for improvement. Here, I describe new dimensions that are becoming important in assessing models (e.g. bias and fairness) and discuss the connection between GAN evaluation and deepfakes. These are important areas of concern in the machine learning community today and progress in GAN evaluation can help mitigate them.

... read more

7 Citations


Open accessPosted Content
Abstract: Autoregressive models and their sequential factorization of the data likelihood have recently demonstrated great potential for image representation and synthesis. Nevertheless, they incorporate image context in a linear 1D order by attending only to previously synthesized image patches above or to the left. Not only is this unidirectional, sequential bias of attention unnatural for images as it disregards large parts of a scene until synthesis is almost complete. It also processes the entire image on a single scale, thus ignoring more global contextual information up to the gist of the entire scene. As a remedy we incorporate a coarse-to-fine hierarchy of context by combining the autoregressive formulation with a multinomial diffusion process: Whereas a multistage diffusion process successively removes information to coarsen an image, we train a (short) Markov chain to invert this process. In each stage, the resulting autoregressive ImageBART model progressively incorporates context from previous stages in a coarse-to-fine manner. Experiments show greatly improved image modification capabilities over autoregressive models while also providing high-fidelity image generation, both of which are enabled through efficient training in a compressed latent space. Specifically, our approach can take unrestricted, user-provided masks into account to perform local image editing. Thus, in contrast to pure autoregressive models, it can solve free-form image inpainting and, in the case of conditional models, local, text-guided image modification without requiring mask-specific training.

... read more

Topics: Autoregressive model (57%), Inpainting (53%), Context (language use) (52%) ... read more

4 Citations


Open accessPosted Content
10 Mar 2021-arXiv: Learning
Abstract: Semantically meaningful information content in perceptual signals is usually unevenly distributed. In speech signals for example, there are often many silences, and the speed of pronunciation can vary considerably. In this work, we propose slow autoencoders (SlowAEs) for unsupervised learning of high-level variable-rate discrete representations of sequences, and apply them to speech. We show that the resulting event-based representations automatically grow or shrink depending on the density of salient information in the input signals, while still allowing for faithful signal reconstruction. We develop run-length Transformers (RLTs) for event-based representation modelling and use them to construct language models in the speech domain, which are able to generate grammatical and semantically coherent utterances and continuations.

... read more

Topics: Unsupervised learning (54%), Language model (52%)

3 Citations


Open accessPosted Content
Hao Liu, Xinghua Jiang, Xin Li, Zhimin Bao  +2 moreInstitutions (1)
Abstract: Recently, Vision Transformers (ViT), with the self-attention (SA) as the de facto ingredients, have demonstrated great potential in the computer vision community. For the sake of trade-off between efficiency and performance, a group of works merely perform SA operation within local patches, whereas the global contextual information is abandoned, which would be indispensable for visual recognition tasks. To solve the issue, the subsequent global-local ViTs take a stab at marrying local SA with global one in parallel or alternative way in the model. Nevertheless, the exhaustively combined local and global context may exist redundancy for various visual data, and the receptive field within each layer is fixed. Alternatively, a more graceful way is that global and local context can adaptively contribute per se to accommodate different visual data. To achieve this goal, we in this paper propose a novel ViT architecture, termed NomMer, which can dynamically Nominate the synergistic global-local context in vision transforMer. By investigating the working pattern of our proposed NomMer, we further explore what context information is focused. Beneficial from this "dynamic nomination" mechanism, without bells and whistles, the NomMer can not only achieve 84.5% Top-1 classification accuracy on ImageNet with only 73M parameters, but also show promising performance on dense prediction tasks, i.e., object detection and semantic segmentation. The code and models will be made publicly available at~\url{https://github.com/NomMer1125/NomMer.

... read more

Topics: Context (language use) (52%)

References
  More

37 results found


Open accessProceedings Article
Diederik P. Kingma1, Jimmy Ba2Institutions (2)
01 Jan 2015-
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

... read more

Topics: Stochastic optimization (63%), Convex optimization (54%), Rate of convergence (52%) ... read more

78,539 Citations


Journal ArticleDOI: 10.1109/TIP.2003.819861
Abstract: Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a structural similarity index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000. A MATLAB implementation of the proposed algorithm is available online at http://www.cns.nyu.edu//spl sim/lcv/ssim/.

... read more

Topics: Image quality (61%), Subjective video quality (56%), Human visual system model (56%) ... read more

30,333 Citations


Open accessJournal ArticleDOI: 10.3156/JSOFT.29.5_177_2
Ian Goodfellow1, Jean Pouget-Abadie1, Mehdi Mirza1, Bing Xu1  +4 moreInstitutions (2)
08 Dec 2014-
Abstract: We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to ½ everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.

... read more

Topics: Generative model (64%), Discriminative model (54%), Approximate inference (53%) ... read more

29,410 Citations


Open accessJournal ArticleDOI: 10.1007/S11263-015-0816-Y
Olga Russakovsky1, Jia Deng2, Hao Su1, Jonathan Krause1  +8 moreInstitutions (4)
Abstract: The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the challenges of collecting large-scale ground truth annotation, highlight key breakthroughs in categorical object recognition, provide a detailed analysis of the current state of the field of large-scale image classification and object detection, and compare the state-of-the-art computer vision accuracy with human accuracy. We conclude with lessons learned in the 5 years of the challenge, and propose future directions and improvements.

... read more

25,260 Citations


Open accessProceedings Article
Ashish Vaswani1, Noam Shazeer1, Niki Parmar2, Jakob Uszkoreit1  +4 moreInstitutions (2)
12 Jun 2017-
Abstract: The dominant sequence transduction models are based on complex recurrent orconvolutional neural networks in an encoder and decoder configuration. The best performing such models also connect the encoder and decoder through an attentionm echanisms. We propose a novel, simple network architecture based solely onan attention mechanism, dispensing with recurrence and convolutions entirely.Experiments on two machine translation tasks show these models to be superiorin quality while being more parallelizable and requiring significantly less timeto train. Our single model with 165 million parameters, achieves 27.5 BLEU onEnglish-to-German translation, improving over the existing best ensemble result by over 1 BLEU. On English-to-French translation, we outperform the previoussingle state-of-the-art with model by 0.7 BLEU, achieving a BLEU score of 41.1.

... read more

Topics: Machine translation (58%), Encoder (52%), BLEU (51%) ... read more

21,996 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20218
Network Information
Related Papers (5)
Attention is All you Need12 Jun 2017

Ashish Vaswani, Noam Shazeer +6 more

Neural Discrete Representation Learning02 Nov 2017

Aaron van den Oord, Oriol Vinyals +1 more

Generative Zero-shot Network Quantization21 Jan 2021

Xiangyu He, Jiahao Lu +4 more