scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime

TL;DR: In this article, a phenomenological framework for laser wakefield acceleration (LWFA) in the 3D nonlinear regime was developed, in which the plasma electrons are expelled by the radiation pressure of a short pulse laser, leading to nearly complete blowout.
Abstract: The extraordinary ability of space-charge waves in plasmas to accelerate charged particles at gradients that are orders of magnitude greater than in current accelerators has been well documented. We develop a phenomenological framework for laser wakefield acceleration (LWFA) in the 3D nonlinear regime, in which the plasma electrons are expelled by the radiation pressure of a short pulse laser, leading to nearly complete blowout. Our theory provides a recipe for designing a LWFA for given laser and plasma parameters and estimates the number and the energy of the accelerated electrons whether self-injected or externally injected. These formulas apply for self-guided as well as externally guided pulses (e.g. by plasma channels). We demonstrate our results by presenting a sample particle-in-cell (PIC) simulation of a $30\text{ }\mathrm{fs}$, 200 TW laser interacting with a 0.75 cm long plasma with density $1.5\ifmmode\times\else\texttimes\fi{}{10}^{18}\text{ }\text{ }{\mathrm{cm}}^{\ensuremath{-}3}$ to produce an ultrashort (10 fs) monoenergetic bunch of self-injected electrons at 1.5 GeV with 0.3 nC of charge. For future higher-energy accelerator applications, we propose a parameter space, which is distinct from that described by Gordienko and Pukhov [Phys. Plasmas 12, 043109 (2005)] in that it involves lower plasma densities and wider spot sizes while keeping the intensity relatively constant. We find that this helps increase the output electron beam energy while keeping the efficiency high.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a unified formalism is presented for the betatron radiation of trapped and accelerated electrons in the so-called bubble regime, the synchrotron radiation of laser-accelerated electrons in usual meter-scale undulators, the nonlinear Thomson scattering from relativistic electrons oscillating in an intense laser field, and the Thomson backscattered radiation of a laser beam by laser accelerated electrons.
Abstract: Relativistic interaction of short-pulse lasers with underdense plasmas has recently led to the emergence of a novel generation of femtosecond x-ray sources. Based on radiation from electrons accelerated in plasma, these sources have the common properties to be compact and to deliver collimated, incoherent, and femtosecond radiation. In this article, within a unified formalism, the betatron radiation of trapped and accelerated electrons in the so-called bubble regime, the synchrotron radiation of laser-accelerated electrons in usual meter-scale undulators, the nonlinear Thomson scattering from relativistic electrons oscillating in an intense laser field, and the Thomson backscattered radiation of a laser beam by laser-accelerated electrons are reviewed. The underlying physics is presented using ideal models, the relevant parameters are defined, and analytical expressions providing the features of the sources are given. Numerical simulations and a summary of recent experimental results on the different mechanisms are also presented. Each section ends with the foreseen development of each scheme. Finally, one of the most promising applications of laser-plasma accelerators is discussed: the realization of a compact free-electron laser in the x-ray range of the spectrum. In the conclusion, the relevant parameters characterizing each sources are summarized. Considering typical laser-plasma interaction parameters obtained with currently available lasers, examples of the source features are given. The sources are then compared to each other in order to define their field of applications.

634 citations


Cites background or methods from "Generating multi-GeV electron bunch..."

  • ...Considering the phenomenological model of the bubble regime described by Lu, Huang, Zhou, Mori, and Katsouleas (2006), Lu, Huang, Zhou, Tzoufras et al. (2006), and Lu et al. (2007), higher electron energy gain requires lower plasma density....

    [...]

  • ...2p=!2L is the etching velocity due to local pump depletion (Decker and Mori, 1994, 1995; Decker et al., 1996; Lu et al., 2007), !p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi nee 2=m 0 p is the plasma frequency, ne the electron density of the plasma, and !...

    [...]

  • ...In this regime, the wake consists of an ion cavity having a spherical shape (Pukhov and Meyerter Vehn, 2002; Lu, Huang, Zhou, Mori, and Katsouleas, 2006; Lu, Huang, Zhou, Tzoufras et al., 2006; Lu et al., 2007)....

    [...]

  • ...2L=e2 is the critical density (this condition expresses that energy loss at the front of the laser pulse due to pump depletion is higher than the loss due to diffraction) (Lu et al., 2007)....

    [...]

  • ...In order to further improve the quality of electrons from laser-plasma accelerators, several routes are proposed from the use of a PW-class laser to multistaged acceleration schemes (Gordienko and Pukhov, 2005; Lifschitz et al., 2005; Malka et al., 2006; Lu et al., 2007; Martins et al., 2010)....

    [...]

Journal ArticleDOI
TL;DR: Simulations indicate that with improvements in the laser-pulse focus quality, acceleration to nearly 10 GeV should be possible with the available pulse energy, and the principal physical barriers to multi-gigaelectronvolt acceleration are overcome.
Abstract: Laser-plasma accelerators can produce high-energy electron bunches over just a few centimetres of distance, offering possible table-top accelerator capabilities. Wang et al. break the current 1 GeV barrier by applying a petawatt laser to accelerate electrons nearly monoenergetically up to 2 GeV.

610 citations

Journal ArticleDOI
TL;DR: In this article, the authors review progress that has been made towards realizing such possibilities and the principles that underlie them and review progress in the development of high-intensity laser systems.
Abstract: Rapid progress in the development of high-intensity laser systems has extended our ability to study light–matter interactions far into the relativistic domain, in which electrons are driven to velocities close to the speed of light. As well as being of fundamental interest in their own right, these interactions enable the generation of high-energy particle beams that are short, bright and have good spatial quality. Along with steady improvements in the size, cost and repetition rate of high-intensity lasers, the unique characteristics of laser-driven particle beams are expected to be useful for a wide range of contexts, including proton therapy for the treatment of cancers, materials characterization, radiation-driven chemistry, border security through the detection of explosives, narcotics and other dangerous substances, and of course high-energy particle physics. Here, we review progress that has been made towards realizing such possibilities and the principles that underlie them.

482 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that the intensity of these X-rays can be as bright as that generated by conventional third-generation synchrotrons, in a device a fraction of the size and cost.
Abstract: Betratron oscillations of electrons driven through a plasma by a high-intensity laser generate coherent X-rays. A new study demonstrates the intensity of these X-rays can be as bright as that generated by conventional third-generation synchrotrons, in a device a fraction of the size and cost.

403 citations


Cites background from "Generating multi-GeV electron bunch..."

  • ...The average and maximum energy of the electron beam follow the typical wakefield electron density scaling la...

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the generation of soft X-ray undulator radiation with laser-plasma-accelerated electron beams using a 30-cm-long undulator and a 1.5 cm-long accelerator.
Abstract: High-intensity X-ray sources such as synchrotrons and free-electron lasers need large particle accelerators to drive them. The demonstration of a synchrotron X-ray source that uses a laser-driven particle accelerator could widen the availability of intense X-rays for research in physics, materials science and biology. Synchrotrons and free-electron lasers are the most powerful sources of X-ray radiation. They constitute invaluable tools for a broad range of research1; however, their dependence on large-scale radiofrequency electron accelerators means that only a few of these sources exist worldwide. Laser-driven plasma-wave accelerators2,3,4,5,6,7,8,9,10 provide markedly increased accelerating fields and hence offer the potential to shrink the size and cost of these X-ray sources to the university-laboratory scale. Here, we demonstrate the generation of soft-X-ray undulator radiation with laser-plasma-accelerated electron beams. The well-collimated beams deliver soft-X-ray pulses with an expected pulse duration of ∼10 fs (inferred from plasma-accelerator physics). Our source draws on a 30-cm-long undulator11 and a 1.5-cm-long accelerator delivering stable electron beams10 with energies of ∼210 MeV. The spectrum of the generated undulator radiation typically consists of a main peak centred at a wavelength of ∼18 nm (fundamental), a second peak near ∼9 nm (second harmonic) and a high-energy cutoff at ∼7 nm. Magnetic quadrupole lenses11 ensure efficient electron-beam transport and demonstrate an enabling technology for reproducible generation of tunable undulator radiation. The source is scalable to shorter wavelengths by increasing the electron energy. Our results open the prospect of tunable, brilliant, ultrashort-pulsed X-ray sources for small-scale laboratories.

368 citations

References
More filters
Book
01 Jan 1962

24,003 citations

Book
01 Jan 1998
TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Abstract: Introduction to a Transient World. Fourier Kingdom. Discrete Revolution. Time Meets Frequency. Frames. Wavelet Zoom. Wavelet Bases. Wavelet Packet and Local Cosine Bases. An Approximation Tour. Estimations are Approximations. Transform Coding. Appendix A: Mathematical Complements. Appendix B: Software Toolboxes.

17,693 citations


"Generating multi-GeV electron bunch..." refers background in this paper

  • ...The Wigner transform of a function ’ z is defined as [39] W’ z; k R1 1 e ikz’ z z0 2 ’ z z 0 2 dz0 and the relative permittivity valid under the quasistatic approximation is "r 2 1 np nc 1 1 ....

    [...]

Journal ArticleDOI
TL;DR: In this paper, an intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force, and electrons trapped in the wake can be accelerated to high energy.
Abstract: An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density ${10}^{18}$W/${\mathrm{cm}}^{2}$ shone on plasmas of densities ${10}^{18}$ ${\mathrm{cm}}^{\ensuremath{-}3}$ can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulsers are examined.

3,867 citations

Journal ArticleDOI
30 Sep 2004-Nature
TL;DR: It is demonstrated that this randomization of electrons in phase space can be suppressed and that the quality of the electron beams can be dramatically enhanced.
Abstract: Particle accelerators are used in a wide variety of fields, ranging from medicine and biology to high-energy physics. The accelerating fields in conventional accelerators are limited to a few tens of MeV m(-1), owing to material breakdown at the walls of the structure. Thus, the production of energetic particle beams currently requires large-scale accelerators and expensive infrastructures. Laser-plasma accelerators have been proposed as a next generation of compact accelerators because of the huge electric fields they can sustain (>100 GeV m(-1)). However, it has been difficult to use them efficiently for applications because they have produced poor-quality particle beams with large energy spreads, owing to a randomization of electrons in phase space. Here we demonstrate that this randomization can be suppressed and that the quality of the electron beams can be dramatically enhanced. Within a length of 3 mm, the laser drives a plasma bubble that traps and accelerates plasma electrons. The resulting electron beam is extremely collimated and quasi-monoenergetic, with a high charge of 0.5 nC at 170 MeV.

1,854 citations

Journal ArticleDOI
08 Jul 2004-Nature
TL;DR: A laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (more than 109 electrons above 80 MeV) and opens the way for compact and tunable high-brightness sources of electrons and radiation.
Abstract: Laser-driven accelerators, in which particles are accelerated by the electric field of a plasma wave (the wakefield) driven by an intense laser, have demonstrated accelerating electric fields of hundreds of GV m-1 (refs 1–3) These fields are thousands of times greater than those achievable in conventional radio-frequency accelerators, spurring interest in laser accelerators4,5 as compact next-generation sources of energetic electrons and radiation To date, however, acceleration distances have been severely limited by the lack of a controllable method for extending the propagation distance of the focused laser pulse The ensuing short acceleration distance results in low-energy beams with 100 per cent electron energy spread1,2,3, which limits potential applications Here we demonstrate a laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (more than 109 electrons above 80 MeV) Our technique involves the use of a preformed plasma density channel to guide a relativistically intense laser, resulting in a longer propagation distance The results open the way for compact and tunable high-brightness sources of electrons and radiation

1,749 citations