scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Generation of Triplet Excited States via Photoinduced Electron Transfer in meso-anthra-BODIPY: Fluorogenic Response toward Singlet Oxygen in Solution and in Vitro

TL;DR: 1O2 generation by BADs in living cells enables visualization of the dyads distribution, promising new imaging applications.
Abstract: Heavy atom-free BODIPY-anthracene dyads (BADs) generate locally excited triplet states by way of photoinduced electron transfer (PeT), followed by recombination of the resulting charge-separated states (CSS). Subsequent quenching of the triplet states by molecular oxygen produces singlet oxygen (1O2), which reacts with the anthracene moiety yielding highly fluorescent species. The steric demand of the alkyl substituents in the BODIPY subunit defines the site of 1O2 addition. Novel bis- and tetraepoxides and bicyclic acetal products, arising from rearrangements of anthracene endoperoxides were isolated and characterized. 1O2 generation by BADs in living cells enables visualization of the dyads distribution, promising new imaging applications.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the design principles of aggregation-induced emission (AIE) PSs and their biomedical applications are discussed in detail, starting with a summary of traditional PSs, followed by a comparison between traditional and AIE PSs to highlight various design strategies and unique features of the latter.
Abstract: Photodynamic therapy is arising as a noninvasive treatment modality for cancer and other diseases. One of the key factors to determine the therapeutic function is the efficiency of photosensitizers (PSs). Opposed to traditional PSs, which show quenched fluorescence and reduced singlet oxygen production in the aggregate state, PSs with aggregation-induced emission (AIE) exhibit enhanced fluorescence and strong photosensitization ability in nanoparticles. Here, the design principles of AIE PSs and their biomedical applications are discussed in detail, starting with a summary of traditional PSs, followed by a comparison between traditional and AIE PSs to highlight the various design strategies and unique features of the latter. Subsequently, the applications of AIE PSs in photodynamic cancer cell ablation, bacteria killing, and image-guided therapy are discussed using charged AIE PSs, AIE PS molecular probes, and AIE PS nanoparticles as examples. These studies have demonstrated the great potential of AIE PSs as effective theranostic agents to treat tumor or bacterial infection. This review hopefully will spur more research interest in AIE PSs for future translational research.

509 citations

Journal Article
11 Jun 2020-Elements
TL;DR: The design principles of AIE PSs and their biomedical applications are discussed in detail, starting with a summary of traditional PSs, followed by a comparison between traditional and AIEPSs to highlight the various design strategies and unique features of the latter.
Abstract: Photodynamic therapy is arising as a noninvasive treatment modality for cancer and other diseases. One of the key factors to determine the therapeutic function is the efficiency of photosensitizers (PSs). Opposed to traditional PSs, which show quenched fluorescence and reduced singlet oxygen production in the aggregate state, PSs with aggregation-induced emission (AIE) exhibit enhanced fluorescence and strong photosensitization ability in nanoparticles. Here, the design principles of AIE PSs and their biomedical applications are discussed in detail, starting with a summary of traditional PSs, followed by a comparison between traditional and AIE PSs to highlight the various design strategies and unique features of the latter. Subsequently, the applications of AIE PSs in photodynamic cancer cell ablation, bacteria killing, and image-guided therapy are discussed using charged AIE PSs, AIE PS molecular probes, and AIE PS nanoparticles as examples. These studies have demonstrated the great potential of AIE PSs as effective theranostic agents to treat tumor or bacterial infection. This review hopefully will spur more research interest in AIE PSs for future translational research.

345 citations

Journal ArticleDOI
TL;DR: This review summarizes the recent progress of organic phototheranostic agents with an emphasis on the main strategies to manipulate the three excitation energy dissipation pathways, namely, radiative decay, thermal deactivation, and intersystem crossing, with the assistance of a Jablonski diagram.
Abstract: Phototheranostics represents a promising direction for modern precision medicine, which has recently attracted great research interest from multidisciplinary research areas. Organic optical agents including small molecular fluorophores, semiconducting/conjugated polymers, aggregation-induced emission luminogens, etc. with tuneable photophysical properties, high biosafety and biocompatibility, facile processability and ease of functionalization have delivered encouraging performance in disease phototheranostics. This review summarizes the recent progress of organic phototheranostic agents with an emphasis on the main strategies to manipulate the three excitation energy dissipation pathways, namely, radiative decay, thermal deactivation, and intersystem crossing, with the assistance of a Jablonski diagram, which particularly showcases how the Jablonski diagram has been guiding the design of organic agents from molecule to aggregate levels to promote the disease phototheranostic outcomes. Molecular design and nanoengineering strategies to modulate photophysical processes of organic optical agents to convert the absorbed photons into fluorescent/phosphorescent/photoacoustic signals and/or photodynamic/photothermal curing effects for improved disease phototheranostics are elaborated. Noteworthily, adaptive phototheranostics with activatable and transformable functions on demand, and regulation of excitation such as chemiexcitation to promote the phototheranostic efficacies are also included. A brief summary with the discussion of current challenges and future perspectives in this research field is further presented.

292 citations

Journal ArticleDOI
TL;DR: This review will provide general guidance for the future design of innovative photosensitizers and spur preclinical and clinical studies for PDT-mediated cancer treatments and the challenges that need to be addressed to develop optimal heavy-atom-free photosensiter structures for oncologic photodynamic therapy.
Abstract: Photodynamic therapy (PDT) is a clinically approved therapeutic modality that has shown great potential for the treatment of cancers owing to its excellent spatiotemporal selectivity and inherently noninvasive nature. However, PDT has not reached its full potential, partly due to the lack of ideal photosensitizers. A common molecular design strategy for effective photosensitizers is to incorporate heavy atoms into photosensitizer structures, causing concerns about elevated dark toxicity, short triplet-state lifetimes, poor photostability, and the potentially high cost of heavy metals. To address these drawbacks, a significant advance has been devoted to developing advanced smart photosensitizers without the use of heavy atoms to better fit the clinical requirements of PDT. Over the past few years, heavy-atom-free nonporphyrinoid photosensitizers have emerged as an innovative alternative class of PSs due to their superior photophysical and photochemical properties and lower expense. Heavy-atom-free nonporphyrinoid photosensitizers have been widely explored for PDT purposes and have shown great potential for clinical oncologic applications. Although many review articles about heavy-atom-free photosensitizers based on porphyrinoid structure have been published, no specific review articles have yet focused on the heavy-atom-free nonporphyrinoid photosensitizers.In this account, the specific concept related to heavy-atom-free photosensitizers and the advantageous properties of heavy-atom-free photosensitizers for cancer theranostics will be briefly introduced. In addition, recent progress in the development of heavy-atom-free photosensitizers, ranging from molecular design approaches to recent innovative types of heavy-atom-free nonporphyrinoid photosensitizers, emphasizing our own research, will be presented. The main molecular design approaches to efficient heavy-atom-free PSs can be divided into six groups: (1) the approach based on traditional tetrapyrrole structures, (2) spin-orbit charge-transfer intersystem crossing (SOCT-ISC), (3) reducing the singlet-triplet energy gap (ΔEST), (4) the thionation of carbonyl groups of conventional fluorophores, (5) twisted π-conjugation system-induced intersystem crossing, and (6) radical-enhanced intersystem crossing. The innovative types of heavy-atom-free nonporphyrinoid photosensitizers and their applications in cancer diagnostics and therapeutics will be discussed in detail in the third section. Finally, the challenges that need to be addressed to develop optimal heavy-atom-free photosensitizers for oncologic photodynamic therapy and a perspective in this research field will be provided. We believe that this review will provide general guidance for the future design of innovative photosensitizers and spur preclinical and clinical studies for PDT-mediated cancer treatments.

232 citations

Journal ArticleDOI
TL;DR: The construction of photo-responsive supramolecular polymers toward fluorescent anti-counterfeit applications, by taking advantage of multicycle anthracene‒endoperoxide switching properties are reported.
Abstract: Innovative technologies are highly pursued for the detection and avoidance of counterfeiting in modern information society. Herein, we report the construction of photo-responsive supramolecular polymers toward fluorescent anti-counterfeit applications, by taking advantage of multicycle anthracene‒endoperoxide switching properties. Due to σ-metalation effect, photo-oxygenation of anthracene to endoperoxide is proceeded under the mild visible light irradiation conditions, while the backward conversion occurs spontaneously at room temperature. Supramolecular polymers are formed with cooperative nucleation‒elongation mechanism, which facilitate fluorescence resonance energy transfer process via two-component co-assembly strategy. Fluorescence resonance energy transfer efficiency is delicately regulated by either light-triggered anthracene‒endoperoxide conversion or vapor-induced monomer-polymer transition, leading to high-contrast fluorescent changes among three different states. On this basis, dual-mode anti-counterfeiting patterns have been successfully fabricated via inkjet printing techniques. Hence, cooperative supramolecular polymerization of photo-fluorochromic molecules represents an efficient approach toward high-performance anti-counterfeit materials with enhanced security reliability, fast response, and ease of operation.

180 citations

References
More filters
Journal ArticleDOI
TL;DR: The attributes of BODIPY dyes for PDT are summarized, and substituents with appropriate oxidation potentials are summarized in some related areas.
Abstract: BODIPY dyes tend to be highly fluorescent, but their emissions can be attenuated by adding substituents with appropriate oxidation potentials. Substituents like these have electrons to feed into photoexcited BODIPYs, quenching their fluorescence, thereby generating relatively long-lived triplet states. Singlet oxygen is formed when these triplet states interact with 3O2. In tissues, this causes cell damage in regions that are illuminated, and this is the basis of photodynamic therapy (PDT). The PDT agents that are currently approved for clinical use do not feature BODIPYs, but there are many reasons to believe that this situation will change. This review summarizes the attributes of BODIPY dyes for PDT, and in some related areas.

1,599 citations

Journal ArticleDOI
TL;DR: A survey of tools and tactics for using small-molecule fluorescent probes to detect biologically important chemical analytes is presented, highlighting design criteria for effective chemical tools for use in biological applications as well as gaps for future exploration.
Abstract: The dynamic chemical diversity of elements, ions and molecules that form the basis of life offers both a challenge and an opportunity for study. Small-molecule fluorescent probes can make use of selective, bioorthogonal chemistries to report on specific analytes in cells and in more complex biological specimens. These probes offer powerful reagents to interrogate the physiology and pathology of reactive chemical species in their native environments with minimal perturbation to living systems. This Review presents a survey of tools and tactics for using such probes to detect biologically important chemical analytes. We highlight design criteria for effective chemical tools for use in biological applications as well as gaps for future exploration.

1,523 citations

Journal ArticleDOI
TL;DR: The methods for switching (or modulation) of the triplet excited state of Bodipy were discussed, such as those based on the photo-induced electron transfer (PET), by controlling the competing Förster-resonance-energy-transfer (FRET), or the intermolecular charge transfer (ICT).
Abstract: Boron dipyrromethene (Bodipy) is one of the most extensively investigated organic chromophores. Most of the investigations are focused on the singlet excited state of Bodipy, such as fluorescence. In stark contrast, the study of the triplet excited state of Bodipy is limited, but it is an emerging area, since the triplet state of Bodipy is tremendously important for several areas, such as the fundamental photochemistry study, photodynamic therapy (PDT), photocatalysis and triplet–triplet annihilation (TTA) upconversion. The recent developments in the study of the production, modulation and application of the triplet excited state of Bodipy are discussed in this review article. The formation of the triplet state of Bodipy upon photoexcitation, via the well known approach such as the heavy atom effect (including I, Br, Ru, Ir, etc.), and the new methods, such as using a spin converter (e.g. C60), charge recombination, exciton coupling and the doubly substituted excited state, are summarized. All the Bodipy-based triplet photosensitizers show strong absorption of visible or near IR light and the long-lived triplet excited state, which are important for the application of the triplet excited state in PDT or photocatalysis. Moreover, the methods for switching (or modulation) of the triplet excited state of Bodipy were discussed, such as those based on the photo-induced electron transfer (PET), by controlling the competing Forster-resonance-energy-transfer (FRET), or the intermolecular charge transfer (ICT). Controlling the triplet excited state will give functional molecules such as activatable PDT reagents or molecular devices. It is worth noting that switching of the singlet excited state and the triplet state of Bodipy may follow different principles. Application of the triplet excited state of Bodipy in PDT, hydrogen (H2) production, photoredox catalytic organic reactions and TTA upconversion were discussed. The challenges and the opportunities in these areas were briefly discussed.

583 citations

Journal ArticleDOI
TL;DR: A library of probes in which the threshold of fluorescence ON/OFF switching corresponds to different levels of solvent polarity is designed and synthesized, which were used to examine bovine serum albumin and living cells and concluded to be similar to that of acetone.
Abstract: We systematically examined the mechanism of the solvent polarity dependence of the fluorescence ON/OFF threshold of the BODIPY (boron dipyrromethene) fluorophore and the role of photoinduced electron transfer (PeT). In a series of BODIPY derivatives with variously substituted benzene moieties at the 8-position, the oxidation potential of the benzene moiety became more positive and the reduction potential of the BODIPY fluorophore became more negative as the solvent polarity was decreased; consequently, the free energy change of PeT from the benzene moiety becomes larger in a more nonpolar environment. Utilizing this finding, we designed and synthesized a library of probes in which the threshold of fluorescence ON/OFF switching corresponds to different levels of solvent polarity. These environment-sensitive probes were used to examine bovine serum albumin (BSA) and living cells. The polarity at the surface of albumin was concluded to be similar to that of acetone, while the polarity of the internal membranes of HeLa cells was similar to that of dichloromethane.

443 citations