scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Generative communication in Linda

David Gelernter1
02 Jan 1985-ACM Transactions on Programming Languages and Systems (ACM)-Vol. 7, Iss: 1, pp 80-112
TL;DR: This work is particularly concerned with implementation of the dynamic global name space that the generative communication model requires, and its implications for systems programming in distributed settings generally and on integrated network computers in particular.
Abstract: Generative communication is the basis of a new distributed programming langauge that is intended for systems programming in distributed settings generally and on integrated network computers in particular. It differs from previous interprocess communication models in specifying that messages be added in tuple-structured form to the computation environment, where they exist as named, independent entities until some process chooses to receive them. Generative communication results in a number of distinguishing properties in the new language, Linda, that is built around it. Linda is fully distributed in space and distributed in time; it allows distributed sharing, continuation passing, and structured naming. We discuss these properties and their implications, then give a series of examples. Linda presents novel implementation problems that we discuss in Part II. We are particularly concerned with implementation of the dynamic global name space that the generative communication model requires.
Citations
More filters
Journal ArticleDOI
Jeffrey O. Kephart1, David M. Chess1
TL;DR: A 2001 IBM manifesto noted the almost impossible difficulty of managing current and planned computing systems, which require integrating several heterogeneous environments into corporate-wide computing systems that extend into the Internet.
Abstract: A 2001 IBM manifesto observed that a looming software complexity crisis -caused by applications and environments that number into the tens of millions of lines of code - threatened to halt progress in computing. The manifesto noted the almost impossible difficulty of managing current and planned computing systems, which require integrating several heterogeneous environments into corporate-wide computing systems that extend into the Internet. Autonomic computing, perhaps the most attractive approach to solving this problem, creates systems that can manage themselves when given high-level objectives from administrators. Systems manage themselves according to an administrator's goals. New components integrate as effortlessly as a new cell establishes itself in the human body. These ideas are not science fiction, but elements of the grand challenge to create self-managing computing systems.

6,527 citations


Cites background from "Generative communication in Linda"

  • ...As C evolves, into what we call “Late C ” (templates, exceptions, dynamic casting) the discourses surrounding C change also — leaving the object-oriented grand narrative, and becoming postmodern, building a theory of multi-paradigm design and programming upwards from the language features [14, 67, 47]....

    [...]

  • ...Under the right circumstances, control theory has been found to be a reasonable approach to maintaining service level objectives without depending upon a pre-existing model of the system [14]....

    [...]

Proceedings Article
22 Jun 2010
TL;DR: Spark can outperform Hadoop by 10x in iterative machine learning jobs, and can be used to interactively query a 39 GB dataset with sub-second response time.
Abstract: MapReduce and its variants have been highly successful in implementing large-scale data-intensive applications on commodity clusters. However, most of these systems are built around an acyclic data flow model that is not suitable for other popular applications. This paper focuses on one such class of applications: those that reuse a working set of data across multiple parallel operations. This includes many iterative machine learning algorithms, as well as interactive data analysis tools. We propose a new framework called Spark that supports these applications while retaining the scalability and fault tolerance of MapReduce. To achieve these goals, Spark introduces an abstraction called resilient distributed datasets (RDDs). An RDD is a read-only collection of objects partitioned across a set of machines that can be rebuilt if a partition is lost. Spark can outperform Hadoop by 10x in iterative machine learning jobs, and can be used to interactively query a 39 GB dataset with sub-second response time.

4,959 citations


Cites background from "Generative communication in Linda"

  • ...Linda [13] provides a tuple space programming model that may be implemented in a fault-tolerant fashion....

    [...]

Journal ArticleDOI
TL;DR: This paper factors out the common denominator underlying these variants: full decoupling of the communicating entities in time, space, and synchronization to better identify commonalities and divergences with traditional interaction paradigms.
Abstract: Well adapted to the loosely coupled nature of distributed interaction in large-scale applications, the publish/subscribe communication paradigm has recently received increasing attention. With systems based on the publish/subscribe interaction scheme, subscribers register their interest in an event, or a pattern of events, and are subsequently asynchronously notified of events generated by publishers. Many variants of the paradigm have recently been proposed, each variant being specifically adapted to some given application or network model. This paper factors out the common denominator underlying these variants: full decoupling of the communicating entities in time, space, and synchronization. We use these three decoupling dimensions to better identify commonalities and divergences with traditional interaction paradigms. The many variations on the theme of publish/subscribe are classified and synthesized. In particular, their respective benefits and shortcomings are discussed both in terms of interfaces and implementations.

3,380 citations

Journal ArticleDOI
TL;DR: A conceptual framework is presented that separates the acquisition and representation of context from the delivery and reaction to context by a context-aware application, and a toolkit is built that instantiates this conceptual framework and supports the rapid development of a rich space of context- aware applications.
Abstract: Computing devices and applications are now used beyond the desktop, in diverse environments, and this trend toward ubiquitous computing is accelerating. One challenge that remains in this emerging research field is the ability to enhance the behavior of any application by informing it of the context of its use. By context, we refer to any information that characterizes a situation related to the interaction between humans, applications, and the surrounding environment. Context-aware applications promise richer and easier interaction, but the current state of research in this field is still far removed from that vision. This is due to 3 main problems: (a) the notion of context is still ill defined, (b) there is a lack of conceptual models and methods to help drive the design of context-aware applications, and (c) no tools are available to jump-start the development of context-aware applications. In this anchor article, we address these 3 problems in turn. We first define context, identify categories of contextual information, and characterize context-aware application behavior. Though the full impact of context-aware computing requires understanding very subtle and high-level notions of context, we are focusing our efforts on the pieces of context that can be inferred automatically from sensors in a physical environment. We then present a conceptual framework that separates the acquisition and representation of context from the delivery and reaction to context by a context-aware application. We have built a toolkit, the Context Toolkit, that instantiates this conceptual framework and supports the rapid development of a rich space of context-aware applications. We illustrate the usefulness of the conceptual framework by describing a number of context-aware applications that have been prototyped using the Context Toolkit. We also demonstrate how such a framework can support the investigation of important research challenges in the area of context-aware computing.

3,095 citations


Additional excerpts

  • ...- 56 (Gerlernter, 1985)....

    [...]

Book
01 Nov 2001
TL;DR: A multi-agent system (MAS) as discussed by the authors is a distributed computing system with autonomous interacting intelligent agents that coordinate their actions so as to achieve its goal(s) jointly or competitively.
Abstract: From the Publisher: An agent is an entity with domain knowledge, goals and actions. Multi-agent systems are a set of agents which interact in a common environment. Multi-agent systems deal with the construction of complex systems involving multiple agents and their coordination. A multi-agent system (MAS) is a distributed computing system with autonomous interacting intelligent agents that coordinate their actions so as to achieve its goal(s) jointly or competitively.

3,003 citations

References
More filters
Journal ArticleDOI
TL;DR: It is suggested that input and output are basic primitives of programming and that parallel composition of communicating sequential processes is a fundamental program structuring method.
Abstract: This paper suggests that input and output are basic primitives of programming and that parallel composition of communicating sequential processes is a fundamental program structuring method. When combined with a development of Dijkstra's guarded command, these concepts are surprisingly versatile. Their use is illustrated by sample solutions of a variety of a familiar programming exercises.

11,419 citations


"Generative communication in Linda" refers background in this paper

  • ...But many distributed or distributable programming languages have already been proposed: CSP [ 17 ], DP [3], Plits [9], ECLU [23], Starmod [4], Ada [6], and SR [l] are examples we discuss below....

    [...]

Book
01 Jan 1985

9,210 citations

Book
Bjarne Stroustrup1
01 Jan 1985
TL;DR: Bjarne Stroustrup makes C even more accessible to those new to the language, while adding advanced information and techniques that even expert C programmers will find invaluable.
Abstract: From the Publisher: Written by Bjarne Stroustrup, the creator of C, this is the world's most trusted and widely read book on C. For this special hardcover edition, two new appendixes on locales and standard library exception safety have been added. The result is complete, authoritative coverage of the C language, its standard library, and key design techniques. Based on the ANSI/ISO C standard, The C Programming Language provides current and comprehensive coverage of all C language features and standard library components. For example: abstract classes as interfaces class hierarchies for object-oriented programming templates as the basis for type-safe generic software exceptions for regular error handling namespaces for modularity in large-scale software run-time type identification for loosely coupled systems the C subset of C for C compatibility and system-level work standard containers and algorithms standard strings, I/O streams, and numerics C compatibility, internationalization, and exception safety Bjarne Stroustrup makes C even more accessible to those new to the language, while adding advanced information and techniques that even expert C programmers will find invaluable.

6,795 citations

Proceedings Article
01 Jan 1974
TL;DR: A simple language for parallel programming is described and its mathematical properties are studied to make a case for more formal languages for systems programming and the design of operating systems.
Abstract: In this paper, we describe a simple language for parallel programming. Its semantics is studied thoroughly. The desirable properties of this language and its deficiencies are exhibited by this theoretical study. Basic results on parallel program schemata are given. We hope in this way to make a case for more formal (i.e. mathematical) approach to the design of languages for systems programming and the design of operating systems. There is a wide disagreement among systems designers as to what are the best primitives for writing systems programs. In this paper, we describe a simple language for parallel programming and study its mathematical properties. 1. A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING The features of our mini-language are exhibited on the sample program S on Figure 1. The conventions are close to Algol1 and we only insist upon the new features. The program S consists of a set of declarations and a body. Variables of type integer channel are declared at line (1), and for any simple type σ (boolean, real, etc. . . ) we could have declared a σ channel. Then processes f , g and h are declared, much like procedures. Aside from usual parameters (passed by value in this example, like INIT at line (3)), we can declare in the heading of the process how it is linked to other processes : at line (2) f is stated to communicate via two input lines that can carry integers, and one similar output line. The body of a process is an usual Algol program except for invocation of wait until something on an input line (e.g. at (4)) or send a variable on a line of compatible type (e.g. at (5)). The process stays blocked on a wait until something is being sent on this line by another process, but nothing can prevent a process from performing a send on a line. In others words, processes communicate via first-in first-out (fifo) queues. Calling instances of the processes is done in the body of the main program at line (6) where the actual names of he channels are bound to the formal parameters of the processes. The infix operator par initiates the concurrent activation of the processes. Such a style of programming is close to may systems using EVENT mechanisms ([1, 2, 3, 4]). A pictorial representation of the program is the schema P on Figure 2, where the nodes represent processes and the arcs communication channels between these processes. What sort of things would we like to prove on a program like S? Firstly, that all processes in S run forever. Secondly, Begin (1) In t eg e r channel X, Y, Z , T1 , T2 ; (2 ) Process f ( i n t e r g e r in U,V; i n t e r g e r out W) ; Begin i n t e g e r I ; l o g i c a l B; B := true ; Repeat Begin (4 ) I := i f B then wait (U) e l s e wait (V) ; (7 ) p r in t ( I ) ; (5 ) send I on W; B := not B; End ; End ; Process g ( i n t e g e r in U ; i n t e g e r out V, W) ; Begin i n t e g e r I ; l o g i c a l B; B := true ; Repeat Begin I := wait (U) ; i f B then send I on V e l s e send I on W : B := not B; End ; End ; (3 ) Process h( i n t e g e r in U; i n t e g e r out V; i n t e g e r INIT ) ; Begin i n t e g e r I ; send INIT on V; Repeat Begin I := wait (U) ; send I on V; End ; End ; Comment : body o f mainprogram ; (6 ) f (X,Y,Z) par g (X,T1 ,T2) par h(T1 ,Y, 0 ) par h(T2 , Z , 1 ) ; End ; Figure 1: Sample parallel program S. more precisely, that S prints out (at line (7)) an alternating sequence of 0’s and 1’s forever. Third, that if one of the processes were to stop at some time for an extraneous reason, the whole systems would stop. The ability to state formally this kind of property of a parallel program and to prove them within a formal logical framework is the central motivation for the theoretical study of the next sections. 2. PARALLEL COMPUTATION Informally speaking, a parallel computation is organized in the following way: some autonomous computing stations are connected to each other in a network by communication lines. Computing stations exchange information through these lines. A given station computes on data coming along

2,478 citations

01 Jan 1978
TL;DR: This ebook is the first authorized digital version of Kernighan and Ritchie's 1988 classic, The C Programming Language (2nd Ed.), and is a "must-have" reference for every serious programmer's digital library.
Abstract: This ebook is the first authorized digital version of Kernighan and Ritchie's 1988 classic, The C Programming Language (2nd Ed.). One of the best-selling programming books published in the last fifty years, "K&R" has been called everything from the "bible" to "a landmark in computer science" and it has influenced generations of programmers. Available now for all leading ebook platforms, this concise and beautifully written text is a "must-have" reference for every serious programmers digital library. As modestly described by the authors in the Preface to the First Edition, this "is not an introductory programming manual; it assumes some familiarity with basic programming concepts like variables, assignment statements, loops, and functions. Nonetheless, a novice programmer should be able to read along and pick up the language, although access to a more knowledgeable colleague will help."

2,120 citations


"Generative communication in Linda" refers background in this paper

  • ...Linda attempts the same combination of simplicity and power in the distributed domain that the systems language C [ 20 ] achieves in the sequential one....

    [...]