scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes

Rona J. Strawbridge1, Josée Dupuis2, Inga Prokopenko3, Adam Barker, Emma Ahlqvist4, Denis Rybin2, John R. Petrie5, Mary E. Travers3, Nabila Bouatia-Naji6, Nabila Bouatia-Naji7, Antigone S. Dimas3, Antigone S. Dimas8, Alexandra C. Nica9, Alexandra C. Nica8, Eleanor Wheeler10, Han Chen2, Benjamin F. Voight11, Benjamin F. Voight12, Jalal Taneera4, Stavroula Kanoni9, Stavroula Kanoni13, J F Peden3, Fabiola Turrini14, Fabiola Turrini4, Stefan Gustafsson15, Carina Zabena16, Peter Almgren4, Barker Djp17, Daniel R. Barnes, Elaine M. Dennison18, Johan G. Eriksson, Per Eriksson15, Elodie Eury7, Elodie Eury6, Lasse Folkersen15, Caroline S. Fox11, Caroline S. Fox2, Timothy M. Frayling19, Anuj Goel3, Harvest F. Gu15, Momoko Horikoshi3, Bo Isomaa, Anne U. Jackson20, Karen A. Jameson18, Eero Kajantie21, Julie Kerr-Conte22, Julie Kerr-Conte6, Teemu Kuulasmaa23, Johanna Kuusisto23, Loos Rjf., Jian'an Luan, Konstantinos Makrilakis24, Alisa K. Manning2, María Teresa Martínez-Larrad16, Narisu Narisu25, M Nastase Mannila15, John Öhrvik15, Clive Osmond18, Laura Pascoe26, Felicity Payne10, Avan Aihie Sayer18, Bengt Sennblad15, Angela Silveira15, Alena Stančáková23, K Stirrups9, Amy J. Swift25, Syvänen A-C.27, Tiinamaija Tuomi28, F.M. van 't Hooft15, Mark Walker26, Michael N. Weedon19, Weijia Xie19, Björn Zethelius27, Halit Ongen3, Anders Mälarstig15, Jemma C. Hopewell3, Danish Saleheen29, J Chambers3, Sarah Parish3, John Danesh29, J Kooner30, Ostenson C-G.31, Lars Lind27, Cyrus Cooper18, Manuel Serrano-Ríos16, Ele Ferrannini32, Tom Forsén28, Robert Clarke3, MariaGrazia Franzosi33, Udo Seedorf34, Hugh Watkins3, Philippe Froguel, Paul Johnson, Panos Deloukas10, Panos Deloukas9, Francis S. Collins25, Markku Laakso23, Emmanouil T. Dermitzakis8, Michael Boehnke20, Mark I. McCarthy, Nicholas J. Wareham10, Leif Groop12, François Pattou6, François Pattou22, Anna L. Gloyn3, George Dedoussis11, Valeriya Lyssenko4, James B. Meigs11, Inês Barroso29, Inês Barroso9, Inês Barroso10, Richard M. Watanabe35, Erik Ingelsson15, Claudia Langenberg, Anders Hamsten15, Jose C. Florez11, Jose C. Florez12 
01 Oct 2011-Diabetes (American Diabetes Association Inc.)-Vol. 60, Iss: 10, pp 2624-2634
TL;DR: The findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis.
Abstract: OBJECTIVE-Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired beta-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS-We have conducted a meta-analysis of genome-wide association tests of similar to 2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS-Nine SNPs at eight loci were associated with proinsulin levels (P < 5 x 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC3OA8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 x 10(-4)), improved beta-cell function (P = 1.1 x 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 x 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS-We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis. Diabetes 60:2624-2634, 2011

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Six previously unknown loci associated with fasting insulin at P < 5 × 10−8 in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals are presented.
Abstract: Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.

811 citations

Journal ArticleDOI
Robert A. Scott, Vasiliki Lagou1, Ryan P. Welch2, Eleanor Wheeler3  +213 moreInstitutions (67)
TL;DR: Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations and further functional analysis of these newly discovered loci will further improve the understanding of glycemic control.
Abstract: Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.

753 citations

Journal ArticleDOI
TL;DR: Evidence of a causal effect of the gut microbiome on metabolic traits is shown and the use of MR is supported as a means to elucidate causal relationships from microbiome-wide association findings.
Abstract: Microbiome-wide association studies on large population cohorts have highlighted associations between the gut microbiome and complex traits, including type 2 diabetes (T2D) and obesity1. However, the causal relationships remain largely unresolved. We leveraged information from 952 normoglycemic individuals for whom genome-wide genotyping, gut metagenomic sequence and fecal short-chain fatty acid (SCFA) levels were available2, then combined this information with genome-wide-association summary statistics for 17 metabolic and anthropometric traits. Using bidirectional Mendelian randomization (MR) analyses to assess causality3, we found that the host-genetic-driven increase in gut production of the SCFA butyrate was associated with improved insulin response after an oral glucose-tolerance test (P = 9.8 × 10-5), whereas abnormalities in the production or absorption of another SCFA, propionate, were causally related to an increased risk of T2D (P = 0.004). These data provide evidence of a causal effect of the gut microbiome on metabolic traits and support the use of MR as a means to elucidate causal relationships from microbiome-wide association findings.

631 citations

Journal ArticleDOI
Robert A. Scott1, Laura J. Scott2, Reedik Mägi3, Letizia Marullo4  +213 moreInstitutions (66)
01 Nov 2017-Diabetes
TL;DR: This article conducted a meta-analysis of genome-wide association data from 26,676 T2D case and 132,532 control subjects of European ancestry after imputation using the 1000 Genomes multiethnic reference panel.
Abstract: To characterize type 2 diabetes (T2D)-associated variation across the allele frequency spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D case and 132,532 control subjects of European ancestry after imputation using the 1000 Genomes multiethnic reference panel Promising association signals were followed up in additional data sets (of 14,545 or 7,397 T2D case and 38,994 or 71,604 control subjects) We identified 13 novel T2D-associated loci (P < 5 × 10-8), including variants near the GLP2R, GIP, and HLA-DQA1 genes Our analysis brought the total number of independent T2D associations to 128 distinct signals at 113 loci Despite substantially increased sample size and more complete coverage of low-frequency variation, all novel associations were driven by common single nucleotide variants Credible sets of potentially causal variants were generally larger than those based on imputation with earlier reference panels, consistent with resolution of causal signals to common risk haplotypes Stratification of T2D-associated loci based on T2D-related quantitative trait associations revealed tissue-specific enrichment of regulatory annotations in pancreatic islet enhancers for loci influencing insulin secretion and in adipocytes, monocytes, and hepatocytes for insulin action-associated loci These findings highlight the predominant role played by common variants of modest effect and the diversity of biological mechanisms influencing T2D pathophysiology

601 citations

Journal ArticleDOI
TL;DR: The results demonstrate the importance of understanding host–microbe interactions to gain better insight into human health and demonstrate the influence of host genetics on microbial species, pathways and gene ontology categories on the basis of metagenomic sequencing in 1,514 subjects.
Abstract: The gut microbiome is affected by multiple factors, including genetics. In this study, we assessed the influence of host genetics on microbial species, pathways and gene ontology categories, on the basis of metagenomic sequencing in 1,514 subjects. In a genome-wide analysis, we identified associations of 9 loci with microbial taxonomies and 33 loci with microbial pathways and gene ontology terms at P < 5 × 10-8. Additionally, in a targeted analysis of regions involved in complex diseases, innate and adaptive immunity, or food preferences, 32 loci were identified at the suggestive level of P < 5 × 10-6. Most of our reported associations are new, including genome-wide significance for the C-type lectin molecules CLEC4F-CD207 at 2p13.3 and CLEC4A-FAM90A1 at 12p13. We also identified association of a functional LCT SNP with the Bifidobacterium genus (P = 3.45 × 10-8) and provide evidence of a gene-diet interaction in the regulation of Bifidobacterium abundance. Our results demonstrate the importance of understanding host-microbe interactions to gain better insight into human health.

597 citations

References
More filters
Journal ArticleDOI
TL;DR: The correlation of the model's estimates with patient data accords with the hypothesis that basal glucose and insulin interactions are largely determined by a simple feed back loop.
Abstract: The steady-state basal plasma glucose and insulin concentrations are determined by their interaction in a feedback loop. A computer-solved model has been used to predict the homeostatic concentrations which arise from varying degrees beta-cell deficiency and insulin resistance. Comparison of a patient's fasting values with the model's predictions allows a quantitative assessment of the contributions of insulin resistance and deficient beta-cell function to the fasting hyperglycaemia (homeostasis model assessment, HOMA). The accuracy and precision of the estimate have been determined by comparison with independent measures of insulin resistance and beta-cell function using hyperglycaemic and euglycaemic clamps and an intravenous glucose tolerance test. The estimate of insulin resistance obtained by homeostasis model assessment correlated with estimates obtained by use of the euglycaemic clamp (Rs = 0.88, p less than 0.0001), the fasting insulin concentration (Rs = 0.81, p less than 0.0001), and the hyperglycaemic clamp, (Rs = 0.69, p less than 0.01). There was no correlation with any aspect of insulin-receptor binding. The estimate of deficient beta-cell function obtained by homeostasis model assessment correlated with that derived using the hyperglycaemic clamp (Rs = 0.61, p less than 0.01) and with the estimate from the intravenous glucose tolerance test (Rs = 0.64, p less than 0.05). The low precision of the estimates from the model (coefficients of variation: 31% for insulin resistance and 32% for beta-cell deficit) limits its use, but the correlation of the model's estimates with patient data accords with the hypothesis that basal glucose and insulin interactions are largely determined by a simple feed back loop.

29,217 citations


"Genome-Wide Association Identifies ..." refers background in this paper

  • ...To clarify potential mechanisms, the top nine signals (ARAP1, two at MADD, PCSK1, TCF7L2, VPS13C/C2CD4A/B, SLC30A8, LARP6, and SGSM2) were also examined in relation to other glucometabolic traits (fasting and 2-h postload glucose and insulin, homeostasis model assessment estimates of b-cell function [HOMA-B] and insulin resistance [HOMA-IR] [28], glycated hemoglobin [A1C], T2D, and BMI [Table 3])....

    [...]

Journal ArticleDOI
TL;DR: This work introduces PLINK, an open-source C/C++ WGAS tool set, and describes the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation, which focuses on the estimation and use of identity- by-state and identity/descent information in the context of population-based whole-genome studies.
Abstract: Whole-genome association studies (WGAS) bring new computational, as well as analytic, challenges to researchers. Many existing genetic-analysis tools are not designed to handle such large data sets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open-source C/C++ WGAS tool set. With PLINK, large data sets comprising hundreds of thousands of markers genotyped for thousands of individuals can be rapidly manipulated and analyzed in their entirety. As well as providing tools to make the basic analytic steps computationally efficient, PLINK also supports some novel approaches to whole-genome data that take advantage of whole-genome coverage. We introduce PLINK and describe the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation. In particular, we focus on the estimation and use of identity-by-state and identity-by-descent information in the context of population-based whole-genome studies. This information can be used to detect and correct for population stratification and to identify extended chromosomal segments that are shared identical by descent between very distantly related individuals. Analysis of the patterns of segmental sharing has the potential to map disease loci that contain multiple rare variants in a population-based linkage analysis.

26,280 citations

Journal ArticleDOI
TL;DR: A novel estimate of insulin sensitivity that is simple to calculate and provides a reasonable approximation of whole-body insulin sensitivity from the oral glucose tolerance test (OGTT).
Abstract: OBJECTIVE: Several methods have been proposed to evaluate insulin sensitivity from the data obtained from the oral glucose tolerance test (OGTT). However, the validity of these indices has not been rigorously evaluated by comparing them with the direct measurement of insulin sensitivity obtained with the euglycemic insulin clamp technique. In this study, we compare various insulin sensitivity indices derived from the OGTT with whole-body insulin sensitivity measured by the euglycemic insulin clamp technique. RESEARCH DESIGN AND METHODS: In this study, 153 subjects (66 men and 87 women, aged 18-71 years, BMI 20-65 kg/m2) with varying degrees of glucose tolerance (62 subjects with normal glucose tolerance, 31 subjects with impaired glucose tolerance, and 60 subjects with type 2 diabetes) were studied. After a 10-h overnight fast, all subjects underwent, in random order, a 75-g OGTT and a euglycemic insulin clamp, which was performed with the infusion of [3-3H]glucose. The indices of insulin sensitivity derived from OGTT data and the euglycemic insulin clamp were compared by correlation analysis. RESULTS: The mean plasma glucose concentration divided by the mean plasma insulin concentration during the OGTT displayed no correlation with the rate of whole-body glucose disposal during the euglycemic insulin clamp (r = -0.02, NS). From the OGTT, we developed an index of whole-body insulin sensitivity (10,000/square root of [fasting glucose x fasting insulin] x [mean glucose x mean insulin during OGTT]), which is highly correlated (r = 0.73, P < 0.0001) with the rate of whole-body glucose disposal during the euglycemic insulin clamp. CONCLUSIONS: Previous methods used to derive an index of insulin sensitivity from the OGTT have relied on the ratio of plasma glucose to insulin concentration during the OGTT. Our results demonstrate the limitations of such an approach. We have derived a novel estimate of insulin sensitivity that is simple to calculate and provides a reasonable approximation of whole-body insulin sensitivity from the OGTT.

4,988 citations


"Genome-Wide Association Identifies ..." refers methods in this paper

  • ...We detected no significant associations for 2-h postload insulin or insulin sensitivity as estimated by the Matsuda index (31) (Table 3)....

    [...]

Journal ArticleDOI
TL;DR: METAL provides a computationally efficient tool for meta-analysis of genome-wide association scans, which is a commonly used approach for improving power complex traits gene mapping studies.
Abstract: Summary: METAL provides a computationally efficient tool for meta-analysis of genome-wide association scans, which is a commonly used approach for improving power complex traits gene mapping studies. METAL provides a rich scripting interface and implements efficient memory management to allow analyses of very large data sets and to support a variety of input file formats. Availability and implementation: METAL, including source code, documentation, examples, and executables, is available at http://www.sph.umich.edu/csg/abecasis/metal/ Contact: ude.hcimu@olacnog

3,994 citations


"Genome-Wide Association Identifies ..." refers methods in this paper

  • ...The inverse-variance fixed effects meta-analysis method was used to evaluate the pooled regression estimates for additively coded SNPs using METAL (24)....

    [...]

Journal ArticleDOI
TL;DR: The performance of the genomic control method is quite good for plausible effects of liability genes, which bodes well for future genetic analyses of complex disorders.
Abstract: A dense set of single nucleotide polymorphisms (SNP) covering the genome and an efficient method to assess SNP genotypes are expected to be available in the near future. An outstanding question is how to use these technologies efficiently to identify genes affecting liability to complex disorders. To achieve this goal, we propose a statistical method that has several optimal properties: It can be used with case control data and yet, like family-based designs, controls for population heterogeneity; it is insensitive to the usual violations of model assumptions, such as cases failing to be strictly independent; and, by using Bayesian outlier methods, it circumvents the need for Bonferroni correction for multiple tests, leading to better performance in many settings while still constraining risk for false positives. The performance of our genomic control method is quite good for plausible effects of liability genes, which bodes well for future genetic analyses of complex disorders.

3,130 citations


"Genome-Wide Association Identifies ..." refers methods in this paper

  • ...Genome-wide association inflation coefficients were estimated for each discovery cohort using the genomic control (GC) method (23) and applied subsequently to each individual SNP association test statistics to correct for cryptic relatedness....

    [...]

Related Papers (5)