scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Genome-wide association study identifies five new schizophrenia loci

01 Oct 2011-Nature Genetics (Nature Publishing Group)-Vol. 43, Iss: 10, pp 969-976
TL;DR: The authors examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects.
Abstract: We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 x 10(-11)) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 x 10(-9)), ANK3 (rs10994359, P = 2.5 x 10(-8)) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 x 10(-9)).

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
Stephan Ripke1, Stephan Ripke2, Benjamin M. Neale1, Benjamin M. Neale2  +351 moreInstitutions (102)
24 Jul 2014-Nature
TL;DR: Associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses.
Abstract: Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia.

6,809 citations

Journal ArticleDOI
S. Hong Lee1, Stephan Ripke2, Stephan Ripke3, Benjamin M. Neale2  +402 moreInstitutions (124)
TL;DR: Empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.
Abstract: Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.

2,058 citations

Journal ArticleDOI
11 Feb 2016-Nature
TL;DR: It is found that many structurally diverse alleles of the complement component 4 (C4) genes generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C 4A.
Abstract: Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia's strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C4A. Human C4 protein localized to neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals with schizophrenia.

1,826 citations

Journal ArticleDOI
TL;DR: It is shown that published studies with significant association of polygenic scores have been well powered, whereas those with negative results can be explained by low sample size, and that useful levels of prediction may only be approached when predictors are estimated from very large samples.
Abstract: Polygenic scores have recently been used to summarise genetic effects among an ensemble of markers that do not individually achieve significance in a large-scale association study. Markers are selected using an initial training sample and used to construct a score in an independent replication sample by forming the weighted sum of associated alleles within each subject. Association between a trait and this composite score implies that a genetic signal is present among the selected markers, and the score can then be used for prediction of individual trait values. This approach has been used to obtain evidence of a genetic effect when no single markers are significant, to establish a common genetic basis for related disorders, and to construct risk prediction models. In some cases, however, the desired association or prediction has not been achieved. Here, the power and predictive accuracy of a polygenic score are derived from a quantitative genetics model as a function of the sizes of the two samples, explained genetic variance, selection thresholds for including a marker in the score, and methods for weighting effect sizes in the score. Expressions are derived for quantitative and discrete traits, the latter allowing for case/control sampling. A novel approach to estimating the variance explained by a marker panel is also proposed. It is shown that published studies with significant association of polygenic scores have been well powered, whereas those with negative results can be explained by low sample size. It is also shown that useful levels of prediction may only be approached when predictors are estimated from very large samples, up to an order of magnitude greater than currently available. Therefore, polygenic scores currently have more utility for association testing than predicting complex traits, but prediction will become more feasible as sample sizes continue to grow.

1,393 citations

References
More filters
Journal ArticleDOI
14 Jan 2005-Cell
TL;DR: In a four-genome analysis of 3' UTRs, approximately 13,000 regulatory relationships were detected above the estimate of false-positive predictions, thereby implicating as miRNA targets more than 5300 human genes, which represented 30% of the gene set.

11,624 citations

Journal ArticleDOI
TL;DR: Throughout middle and old age, usual blood pressure is strongly and directly related to vascular (and overall) mortality, without any evidence of a threshold down to at least 115/75 mm Hg.

9,101 citations

Journal ArticleDOI
TL;DR: PicTar, a computational method for identifying common targets of micro RNAs, is presented and widespread coordinate control executed by microRNAs is suggested, thus providing evidence for coordinate microRNA control in mammals.
Abstract: MicroRNAs are small noncoding RNAs that recognize and bind to partially complementary sites in the 3' untranslated regions of target genes in animals and, by unknown mechanisms, regulate protein production of the target transcript. Different combinations of microRNAs are expressed in different cell types and may coordinately regulate cell-specific target genes. Here, we present PicTar, a computational method for identifying common targets of microRNAs. Statistical tests using genome-wide alignments of eight vertebrate genomes, PicTar's ability to specifically recover published microRNA targets, and experimental validation of seven predicted targets suggest that PicTar has an excellent success rate in predicting targets for single microRNAs and for combinations of microRNAs. We find that vertebrate microRNAs target, on average, roughly 200 transcripts each. Furthermore, our results suggest widespread coordinate control executed by microRNAs. In particular, we experimentally validate common regulation of Mtpn by miR-375, miR-124 and let-7b and thus provide evidence for coordinate microRNA control in mammals.

4,660 citations

Journal ArticleDOI
Shaun Purcell1, Shaun Purcell2, Naomi R. Wray3, Jennifer Stone2, Jennifer Stone1, Peter M. Visscher, Michael Conlon O'Donovan4, Patrick F. Sullivan5, Pamela Sklar2, Pamela Sklar1, Douglas M. Ruderfer, Andrew McQuillin, Derek W. Morris6, Colm O'Dushlaine6, Aiden Corvin6, Peter Holmans4, Stuart MacGregor3, Hugh Gurling, Douglas Blackwood7, Nicholas John Craddock5, Michael Gill6, Christina M. Hultman8, Christina M. Hultman9, George Kirov4, Paul Lichtenstein8, Walter J. Muir7, Michael John Owen4, Carlos N. Pato10, Edward M. Scolnick2, Edward M. Scolnick1, David St Clair, Nigel Williams4, Lyudmila Georgieva4, Ivan Nikolov4, Nadine Norton4, Hywel Williams4, Draga Toncheva, Vihra Milanova, Emma Flordal Thelander8, Patrick Sullivan11, Elaine Kenny6, Emma M. Quinn6, Khalid Choudhury12, Susmita Datta12, Jonathan Pimm12, Srinivasa Thirumalai13, Vinay Puri12, Robert Krasucki12, Jacob Lawrence12, Digby Quested14, Nicholas Bass12, Caroline Crombie15, Gillian Fraser15, Soh Leh Kuan, Nicholas Walker, Kevin A. McGhee7, Ben S. Pickard16, P. Malloy7, Alan W Maclean7, Margaret Van Beck7, Michele T. Pato10, Helena Medeiros10, Frank A. Middleton17, Célia Barreto Carvalho10, Christopher P. Morley17, Ayman H. Fanous, David V. Conti10, James A. Knowles10, Carlos Ferreira, António Macedo18, M. Helena Azevedo18, Andrew Kirby2, Andrew Kirby1, Manuel A. R. Ferreira1, Manuel A. R. Ferreira2, Mark J. Daly1, Mark J. Daly2, Kimberly Chambert2, Finny G Kuruvilla2, Stacey Gabriel2, Kristin G. Ardlie2, Jennifer L. Moran2 
06 Aug 2009-Nature
TL;DR: The extent to which common genetic variation underlies the risk of schizophrenia is shown, using two analytic approaches, and the major histocompatibility complex is implicate, which is shown to involve thousands of common alleles of very small effect.
Abstract: Schizophrenia is a severe mental disorder with a lifetime risk of about 1%, characterized by hallucinations, delusions and cognitive deficits, with heritability estimated at up to 80%(1,2). We performed a genome-wide association study of 3,322 European individuals with schizophrenia and 3,587 controls. Here we show, using two analytic approaches, the extent to which common genetic variation underlies the risk of schizophrenia. First, we implicate the major histocompatibility complex. Second, we provide molecular genetic evidence for a substantial polygenic component to the risk of schizophrenia involving thousands of common alleles of very small effect. We show that this component also contributes to the risk of bipolar disorder, but not to several non-psychiatric diseases.

4,573 citations

Journal ArticleDOI
TL;DR: Evidence is provided that the remaining heritability is due to incomplete linkage disequilibrium between causal variants and genotyped SNPs, exacerbated by causal variants having lower minor allele frequency than the SNPs explored to date.
Abstract: SNPs discovered by genome-wide association studies (GWASs) account for only a small fraction of the genetic variation of complex traits in human populations. Where is the remaining heritability? We estimated the proportion of variance for human height explained by 294,831 SNPs genotyped on 3,925 unrelated individuals using a linear model analysis, and validated the estimation method with simulations based on the observed genotype data. We show that 45% of variance can be explained by considering all SNPs simultaneously. Thus, most of the heritability is not missing but has not previously been detected because the individual effects are too small to pass stringent significance tests. We provide evidence that the remaining heritability is due to incomplete linkage disequilibrium between causal variants and genotyped SNPs, exacerbated by causal variants having lower minor allele frequency than the SNPs explored to date.

3,759 citations

Related Papers (5)
06 Aug 2009-Nature
06 Aug 2009-Nature
Hreinn Stefansson, Hreinn Stefansson, Roel A. Ophoff, Roel A. Ophoff, Roel A. Ophoff, Stacy Steinberg, Stacy Steinberg, Ole A. Andreassen, Sven Cichon, Dan Rujescu, Thomas Werge, Olli Pietilainen, Ole Mors, Preben Bo Mortensen, Engilbert Sigurdsson, Omar Gustafsson, Mette Nyegaard, Annamari Tuulio-Henriksson, Andres Ingason, Thomas Hansen, Jaana Suvisaari, Jouko Lönnqvist, Tiina Paunio, Anders D. Børglum, Anders D. Børglum, Annette M. Hartmann, Anders Fink-Jensen, Merete Nordentoft, David M. Hougaard, Bent Nørgaard-Pedersen, Yvonne Böttcher, Jes Olesen, René Breuer, Hans-Jürgen Möller, Ina Giegling, Henrik B. Rasmussen, Sally Timm, Manuel Mattheisen, István Bitter, János Réthelyi, Brynja B. Magnusdottir, Thordur Sigmundsson, Pall I. Olason, Gisli Masson, Jeffrey R. Gulcher, Magnús Haraldsson, Ragnheidur Fossdal, Thorgeir E. Thorgeirsson, Unnur Thorsteinsdottir, Unnur Thorsteinsdottir, Mirella Ruggeri, Sarah Tosato, Barbara Franke, Eric Strengman, Lambertus A. Kiemeney, Ingrid Melle, Srdjan Djurovic, Lilia I. Abramova, Kaleda Vg, Julio Sanjuán, Rosa de Frutos, Elvira Bramon, Evangelos Vassos, Gillian Fraser, Ulrich Ettinger, Marco Picchioni, Nicholas Walker, T. Toulopoulou, Anna C. Need, Dongliang Ge, Joeng Lim Yoon, Kevin V. Shianna, Nelson B. Freimer, Rita M. Cantor, Robin M. Murray, Augustine Kong, Vera Golimbet, Angel Carracedo, Celso Arango, Javier Costas, Erik G. Jönsson, Lars Terenius, Ingrid Agartz, Hannes Petursson, Markus M. Nöthen, Marcella Rietschel, Paul M. Matthews, Pierandrea Muglia, Leena Peltonen, David St Clair, David Goldstein, Kari Stefansson, Kari Stefansson, David A. Collier, David A. Collier