scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity

TL;DR: This article found a significant burden of rare, single CNVs in severely obese cases (P < 0.0001), indicating enrichment of genes affecting G protein-coupled receptors (GPCRs) involved in the neuronal regulation of energy homeostasis.
Abstract: Common and rare variants associated with body mass index (BMI) and obesity account for 3 s.d. from the mean) of the BMI distribution and 5,380 controls. Evaluation of 29 SNPs (P < 1 × 10(-5)) in an additional 971 severely obese children and 1,990 controls identified 4 new loci associated with severe obesity (LEPR, PRKCH, PACS1 and RMST). A previously reported 43-kb deletion at the NEGR1 locus was significantly associated with severe obesity (P = 6.6 × 10(-7)). However, this signal was entirely driven by a flanking 8-kb deletion; absence of this deletion increased risk for obesity (P = 6.1 × 10(-11)). We found a significant burden of rare, single CNVs in severely obese cases (P < 0.0001). Integrative gene network pathway analysis of rare deletions indicated enrichment of genes affecting G protein-coupled receptors (GPCRs) involved in the neuronal regulation of energy homeostasis.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This Review comprehensively assess the benefits and limitations of GWAS in human populations and discusses the relevance of performing more GWAS, with a focus on the cardiometabolic field.
Abstract: Genome-wide association studies (GWAS) involve testing genetic variants across the genomes of many individuals to identify genotype–phenotype associations. GWAS have revolutionized the field of complex disease genetics over the past decade, providing numerous compelling associations for human complex traits and diseases. Despite clear successes in identifying novel disease susceptibility genes and biological pathways and in translating these findings into clinical care, GWAS have not been without controversy. Prominent criticisms include concerns that GWAS will eventually implicate the entire genome in disease predisposition and that most association signals reflect variants and genes with no direct biological relevance to disease. In this Review, we comprehensively assess the benefits and limitations of GWAS in human populations and discuss the relevance of performing more GWAS. Despite the success of human genome-wide association studies (GWAS) in associating genetic variants and complex diseases or traits, criticisms of the usefulness of this study design remain. This Review assesses the pros and cons of GWAS, with a focus on the cardiometabolic field.

1,002 citations

Journal ArticleDOI
01 Oct 2015-Nature
TL;DR: In extensively phenotyped cohorts, insights from sequencing whole genomes or exomes of nearly 10,000 individuals from population-based and disease collections are described and population structure and functional annotation of rare and low-frequency variants are described.
Abstract: The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we describe insights from sequencing whole genomes (low read depth, 7×) or exomes (high read depth, 80×) of nearly 10,000 individuals from population-based and disease collections. In extensively phenotyped cohorts we characterize over 24 million novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with levels of triglycerides (APOB), adiponectin (ADIPOQ) and low-density lipoprotein cholesterol (LDLR and RGAG1) from single-marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive resource, including individual-level genetic and phenotypic data and web-based tools to facilitate the exploration of association results.

948 citations

01 Jan 2015
TL;DR: The contribution of rare and low-frequency variants to human traits is largely unexplored as mentioned in this paper, but the contribution of these variants to the human traits has not yet been fully explored.
Abstract: The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we describe insights from sequencing whole genomes (low read depth, 7×) or exomes (high read depth, 80×) of nearly 10,000 individuals from population-based and disease collections. In extensively phenotyped cohorts we characterize over 24 million novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with levels of triglycerides (APOB), adiponectin (ADIPOQ) and low-density lipoprotein cholesterol (LDLR and RGAG1) from single-marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive resource, including individual-level genetic and phenotypic data and web-based tools to facilitate the exploration of association results.

824 citations

Journal ArticleDOI
TL;DR: Examples illustrating the versatility of lncRNAs in gene control, development and differentiation, as well as in human disease are discussed.
Abstract: Since decades it has been known that non-protein-coding RNAs have important cellular functions. Deep sequencing recently facilitated the discovery of thousands of novel transcripts, now classified as long noncoding RNAs (lncRNAs), in many vertebrate and invertebrate species. LncRNAs are involved in a wide range of cellular mechanisms, from almost all aspects of gene expression to protein translation and stability. Recent findings implicate lncRNAs as key players of cellular differentiation, cell lineage choice, organogenesis and tissue homeostasis. Moreover, lncRNAs are involved in pathological conditions such as cancer and cardiovascular disease, and therefore provide novel biomarkers and pharmaceutical targets. Here we discuss examples illustrating the versatility of lncRNAs in gene control, development and differentiation, as well as in human disease.

726 citations

Journal ArticleDOI
TL;DR: Evidence from epidemiological and functional studies suggests that FTO confers an increased risk of obesity by subtly changing food intake and preference and emerging data suggest a role for FTO in nutrient sensing, regulation of mRNA translation and general growth.
Abstract: Emerging data onFTO, the first obesity gene to be identified by genome-wide association studies, suggest a role for the encoded demethylase in nutrient sensing, regulation of mRNA translation and general growth. This Review discusses the genetic epidemiology of FTO and how its complex biology might link to the regulation of body weight. Single nucleotide polymorphisms (SNPs) that cluster in the first intron of fat mass and obesity associated (FTO) gene are associated obesity traits in genome-wide association studies. The minor allele increases BMI by 0.39 kg/m2 (or 1,130 g in body weight) and risk of obesity by 1.20-fold. This association has been confirmed across age groups and populations of diverse ancestry; the largest effect is seen in young adulthood. The effect of FTO SNPs on obesity traits in populations of African and Asian ancestry is similar or somewhat smaller than in European ancestry populations. However, the BMI-increasing allele in FTO is substantially less prevalent in populations with non-European ancestry. FTO SNPs do not influence physical activity levels; yet, in physically active individuals, FTO's effect on obesity susceptibility is attenuated by approximately 30%. Evidence from epidemiological and functional studies suggests that FTO confers an increased risk of obesity by subtly changing food intake and preference. Moreover, emerging data suggest a role for FTO in nutrient sensing, regulation of mRNA translation and general growth. In this Review, we discuss the genetic epidemiology of FTO and discuss how its complex biology might link to the regulation of body weight.

497 citations

References
More filters
Journal ArticleDOI
Paul Burton1, David Clayton2, Lon R. Cardon, Nicholas John Craddock3  +192 moreInstitutions (4)
07 Jun 2007-Nature
TL;DR: This study has demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in theBritish population is generally modest.
Abstract: There is increasing evidence that genome-wide association ( GWA) studies represent a powerful approach to the identification of genes involved in common human diseases. We describe a joint GWA study ( using the Affymetrix GeneChip 500K Mapping Array Set) undertaken in the British population, which has examined similar to 2,000 individuals for each of 7 major diseases and a shared set of similar to 3,000 controls. Case-control comparisons identified 24 independent association signals at P < 5 X 10(-7): 1 in bipolar disorder, 1 in coronary artery disease, 9 in Crohn's disease, 3 in rheumatoid arthritis, 7 in type 1 diabetes and 3 in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these signals reflect genuine susceptibility effects. We observed association at many previously identified loci, and found compelling evidence that some loci confer risk for more than one of the diseases studied. Across all diseases, we identified a large number of further signals ( including 58 loci with single-point P values between 10(-5) and 5 X 10(-7)) likely to yield additional susceptibility loci. The importance of appropriately large samples was confirmed by the modest effect sizes observed at most loci identified. This study thus represents a thorough validation of the GWA approach. It has also demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; has generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in the British population is generally modest. Our findings offer new avenues for exploring the pathophysiology of these important disorders. We anticipate that our data, results and software, which will be widely available to other investigators, will provide a powerful resource for human genetics research.

9,244 citations

Journal ArticleDOI
11 May 2007-Science
TL;DR: A genome-wide search for type 2 diabetes–susceptibility genes identified a common variant in the FTO (fat mass and obesity associated) gene that predisposes to diabetes through an effect on body mass index (BMI).
Abstract: Obesity is a serious international health problem that increases the risk of several common diseases. The genetic factors predisposing to obesity are poorly understood. A genome-wide search for type 2 diabetes-susceptibility genes identified a common variant in the FTO (fat mass and obesity associated) gene that predisposes to diabetes through an effect on body mass index (BMI). An additive association of the variant with BMI was replicated in 13 cohorts with 38,759 participants. The 16% of adults who are homozygous for the risk allele weighed about 3 kilograms more and had 1.67-fold increased odds of obesity when compared with those not inheriting a risk allele. This association was observed from age 7 years upward and reflects a specific increase in fat mass.

4,184 citations

Journal ArticleDOI
TL;DR: This work proposes a coherent analysis framework that treats the genome-wide association problem as one involving missing or uncertain genotypes, and proposes a model-based imputation method for inferring genotypes at observed or unobserved SNPs, leading to improved power over existing methods for multipoint association mapping.
Abstract: Genome-wide association studies are set to become the method of choice for uncovering the genetic basis of human diseases. A central challenge in this area is the development of powerful multipoint methods that can detect causal variants that have not been directly genotyped. We propose a coherent analysis framework that treats the problem as one involving missing or uncertain genotypes. Central to our approach is a model-based imputation method for inferring genotypes at observed or unobserved SNPs, leading to improved power over existing methods for multipoint association mapping. Using real genome-wide association study data, we show that our approach (i) is accurate and well calibrated, (ii) provides detailed views of associated regions that facilitate follow-up studies and (iii) can be used to validate and correct data at genotyped markers. A notable future use of our method will be to boost power by combining data from genome-wide scans that use different SNP sets.

2,640 citations

Journal ArticleDOI
TL;DR: Genetic loci associated with body mass index map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor, which may provide new insights into human body weight regulation.
Abstract: Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and similar to 2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 x 10(-8)), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.

2,632 citations

Journal ArticleDOI
TL;DR: LocusZoom is a web-based plotting tool that provides fast visual display of GWAS results in a publication-ready format that visually displays regional information such as the strength and extent of the association signal relative to genomic position, local linkage disequilibrium (LD) and recombination patterns and the positions of genes in the region.
Abstract: Summary: Genome-wide association studies (GWAS) have revealed hundreds of loci associated with common human genetic diseases and traits. We have developed a web-based plotting tool that provides fast visual display of GWAS results in a publication-ready format. LocusZoom visually displays regional information such as the strength and extent of the association signal relative to genomic position, local linkage disequilibrium (LD) and recombination patterns

2,454 citations

Related Papers (5)