scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Genome-Wide Survey and Expression Analysis of the Plant-Specific NAC Transcription Factor Family in Soybean During Development and Dehydration Stress

01 Aug 2011-DNA Research (Oxford University Press)-Vol. 18, Iss: 4, pp 263-276
TL;DR: This systematic analysis has identified excellent tissue-specific and/or dehydration-responsive candidate GmNAC genes for in-depth characterization and future development of improved drought-tolerant transgenic soybeans.
Abstract: Plant-specific NAC transcription factors (TFs) play important roles in regulating diverse biological processes, including development, senescence, growth, cell division and responses to environmental stress stimuli. Within the soybean genome, we identified 152 full-length GmNAC TFs, including 11 membrane-bound members. In silico analysis of the GmNACs, together with their Arabidopsis and rice counterparts, revealed similar NAC architecture. Next, we explored the soybean Affymetrix array and Illumina transcriptome sequence data to analyse tissue-specific expression profiles of GmNAC genes. Phylogenetic analysis using stress-related NAC TFs from Arabidopsis and rice as seeding sequences identified 58 of the 152 GmNACs as putative stress-responsive genes, including eight previously reported dehydration-responsive GmNACs. We could design gene-specific primers for quantitative real-time PCR verification of 38 out of 50 newly predicted stress-related genes. Twenty-five and six GmNACs were found to be induced and repressed 2-fold or more, respectively, in soybean roots and/or shoots in response to dehydration. GmNAC085, whose amino acid sequence was 39%; identical to that of well-known SNAC1/ONAC2, was the most induced gene upon dehydration, showing 390-fold and 20-fold induction in shoots and roots, respectively. Our systematic analysis has identified excellent tissue-specific and/or dehydration-responsive candidate GmNAC genes for in-depth characterization and future development of improved drought-tolerant transgenic soybeans.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This review summarizes the recent progress in research on NACs highlighting the proteins' potential for engineering stress tolerance against various abiotic and biotic challenges and their prospective role for crop improvement strategies via biotechnological intervention.

791 citations

Journal ArticleDOI
30 Jan 2019
TL;DR: The causes ofClimate change, stresses produced due to climate change, impacts on crops, modern breeding technologies, and biotechnological strategies to cope with climate change are summarized in order to develop climate resilient crops.
Abstract: Agriculture and climate change are internally correlated with each other in various aspects, as climate change is the main cause of biotic and abiotic stresses, which have adverse effects on the agriculture of a region. The land and its agriculture are being affected by climate changes in different ways, e.g., variations in annual rainfall, average temperature, heat waves, modifications in weeds, pests or microbes, global change of atmospheric CO2 or ozone level, and fluctuations in sea level. The threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting negative impact on global crop production and compromising food security worldwide. According to some predicted reports, agriculture is considered the most endangered activity adversely affected by climate changes. To date, food security and ecosystem resilience are the most concerning subjects worldwide. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation, before it might affect global crop production drastically. In this review paper, we summarize the causes of climate change, stresses produced due to climate change, impacts on crops, modern breeding technologies, and biotechnological strategies to cope with climate change, in order to develop climate resilient crops. Revolutions in genetic engineering techniques can also aid in overcoming food security issues against extreme environmental conditions, by producing transgenic plants.

742 citations


Cites background from "Genome-Wide Survey and Expression A..."

  • ...Numerous NAC TFs have been discovered in a wide range of plants with sequenced genomes such as in rice with 151, in Arabidopsis 117 [219], in maize 152 [220], and in soybean 152 [221] NAC TFs have been identified....

    [...]

Journal ArticleDOI
TL;DR: An overview of the regulation of the stress responsive NAC SNAC/(IX) group of genes that are implicated in the resistance to different stresses is presented and it is reviewed that their overexpression can improve stress tolerance via biotechnological approaches.
Abstract: NAC transcription factors are one of the largest families of transcriptional regulators in plants, and members of the NAC gene family have been suggested to play important roles in the regulation of the transcriptional reprogramming associated with plant stress responses. A phylogenetic analysis of NAC genes, with a focus on rice and Arabidopsis, was performed. Herein, we present an overview of the regulation of the stress responsive NAC SNAC/(IX) group of genes that are implicated in the resistance to different stresses. SNAC factors have important roles for the control of biotic and abiotic stresses tolerance and that their overexpression can improve stress tolerance via biotechnological approaches. We also review the recent progress in elucidating the roles of NAC transcription factors in plant biotic and abiotic stresses. Modification of the expression pattern of transcription factor genes and/or changes in their activity contribute to the elaboration of various signaling pathways and regulatory networks. However, a single NAC gene often responds to several stress factors, and their protein products may participate in the regulation of several seemingly disparate processes as negative or positive regulators. Additionally, the NAC proteins function via auto-regulation or cross-regulation is extensively found among NAC genes. These observations assist in the understanding of the complex mechanisms of signaling and transcriptional reprogramming controlled by NAC proteins.

603 citations

Journal ArticleDOI
TL;DR: The current review aims to offer a deeper understanding of TFs engaged in regulating plant’s response under drought stress and to devise potential strategies to improve plant tolerance against drought.
Abstract: Increasing vulnerability of plants to a variety of stresses such as drought, salt and extreme temperatures poses a global threat to sustained growth and productivity of major crops. Of these stresses, drought represents a considerable threat to plant growth and development. In view of this, developing staple food cultivars with improved drought tolerance emerges as the most sustainable solution towards improving crop productivity in a scenario of climate change. In parallel, unraveling the genetic architecture and the targeted identification of molecular networks using modern “OMICS” analyses, that can underpin drought tolerance mechanisms, is urgently required. Importantly, integrated studies intending to elucidate complex mechanisms can bridge the gap existing in our current knowledge about drought stress tolerance in plants. It is now well established that drought tolerance is regulated by several genes, including transcription factors (TFs) that enable plants to withstand unfavorable conditions, and these remain potential genomic candidates for their wide application in crop breeding. These TFs represent the key molecular switches orchestrating the regulation of plant developmental processes in response to a variety of stresses. The current review aims to offer a deeper understanding of TFs engaged in regulating plant’s response under drought stress and to devise potential strategies to improve plant tolerance against drought.

499 citations


Cites background from "Genome-Wide Survey and Expression A..."

  • ...The role of NAC TFs in drought stress response is further supported by several transcriptome-based analyses undertaken in different crops; examples include 40 NAC genes in rice (Shao et al., 2015), 38 NAC genes in soybean (Le et al., 2011)....

    [...]

Journal ArticleDOI
TL;DR: The data demonstrate that Cd perturbs the DNA methylation status through the involvement of a specific methyltransferase, linked to nuclear chromatin reconfiguration likely to establish a new balance of expressed/repressed chromatin.
Abstract: In mammals, cadmium is widely considered as a non-genotoxic carcinogen acting through a methylation-dependent epigenetic mechanism. Here, the effects of Cd treatment on the DNA methylation patten are examined together with its effect on chromatin reconfiguration in Posidonia oceanica. DNA methylation level and pattern were analysed in actively growing organs, under short- (6 h) and long- (2 d or 4 d) term and low (10 mM) and high (50 mM) doses of Cd, through a Methylation-Sensitive Amplification Polymorphism technique and an immunocytological approach, respectively. The expression of one member of the CHROMOMETHYLASE (CMT) family, a DNA methyltransferase, was also assessed by qRT-PCR. Nuclear chromatin ultrastructure was investigated by transmission electron microscopy. Cd treatment induced a DNA hypermethylation, as well as an up-regulation of CMT, indicating that de novo methylation did indeed occur. Moreover, a high dose of Cd led to a progressive heterochromatinization of interphase nuclei and apoptotic figures were also observed after long-term treatment. The data demonstrate that Cd perturbs the DNA methylation status through the involvement of a specific methyltransferase. Such changes are linked to nuclear chromatin reconfiguration likely to establish a new balance of expressed/repressed chromatin. Overall, the data show an epigenetic basis to the mechanism underlying Cd toxicity in plants.

450 citations


Cites background from "Genome-Wide Survey and Expression A..."

  • ...This has resulted in identification of ‘candidate genes’ (Le et al., 2011), likely to confer DR in crop species....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: ClUSTAL X is a new windows interface for the widely-used progressive multiple sequence alignment program CLUSTAL W, providing an integrated system for performing multiple sequence and profile alignments and analysing the results.
Abstract: CLUSTAL X is a new windows interface for the widely-used progressive multiple sequence alignment program CLUSTAL W. The new system is easy to use, providing an integrated system for performing multiple sequence and profile alignments and analysing the results. CLUSTAL X displays the sequence alignment in a window on the screen. A versatile sequence colouring scheme allows the user to highlight conserved features in the alignment. Pull-down menus provide all the options required for traditional multiple sequence and profile alignment. New features include: the ability to cut-and-paste sequences to change the order of the alignment, selection of a subset of the sequences to be realigned, and selection of a sub-range of the alignment to be realigned and inserted back into the original alignment. Alignment quality analysis can be performed and low-scoring segments or exceptional residues can be highlighted. Quality analysis and realignment of selected residue ranges provide the user with a powerful tool to improve and refine difficult alignments and to trap errors in input sequences. CLUSTAL X has been compiled on SUN Solaris, IRIX5.3 on Silicon Graphics, Digital UNIX on DECstations, Microsoft Windows (32 bit) for PCs, Linux ELF for x86 PCs, and Macintosh PowerMac.

38,522 citations


"Genome-Wide Survey and Expression A..." refers methods in this paper

  • ...2 using ClustalW implemented on MEGA 4 software.(34,35) The alignments were subsequently visualized using GeneDoc (http://www....

    [...]

Journal ArticleDOI
TL;DR: Version 4 of MEGA software expands on the existing facilities for editing DNA sequence data from autosequencers, mining Web-databases, performing automatic and manual sequence alignment, analyzing sequence alignments to estimate evolutionary distances, inferring phylogenetic trees, and testing evolutionary hypotheses.
Abstract: We announce the release of the fourth version of MEGA software, which expands on the existing facilities for editing DNA sequence data from autosequencers, mining Web-databases, performing automatic and manual sequence alignment, analyzing sequence alignments to estimate evolutionary distances, inferring phylogenetic trees, and testing evolutionary hypotheses. Version 4 includes a unique facility to generate captions, written in figure legend format, in order to provide natural language descriptions of the models and methods used in the analyses. This facility aims to promote a better understanding of the underlying assumptions used in analyses, and of the results generated. Another new feature is the Maximum Composite Likelihood (MCL) method for estimating evolutionary distances between all pairs of sequences simultaneously, with and without incorporating rate variation among sites and substitution pattern heterogeneities among lineages. This MCL method also can be used to estimate transition/transversion bias and nucleotide substitution pattern without knowledge of the phylogenetic tree. This new version is a native 32-bit Windows application with multi-threading and multi-user supports, and it is also available to run in a Linux desktop environment (via the Wine compatibility layer) and on Intel-based Macintosh computers under the Parallels program. The current version of MEGA is available free of charge at (http://www.megasoftware.net).

29,021 citations


"Genome-Wide Survey and Expression A..." refers methods in this paper

  • ...2 using ClustalW implemented on MEGA 4 software.(34,35) The alignments were subsequently visualized using GeneDoc (http://www....

    [...]

Book ChapterDOI
TL;DR: This chapter assumes acquaintance with the principles and practice of PCR, as outlined in, for example, refs.
Abstract: 1. Introduction Designing PCR and sequencing primers are essential activities for molecular biologists around the world. This chapter assumes acquaintance with the principles and practice of PCR, as outlined in, for example, refs. 1–4. Primer3 is a computer program that suggests PCR primers for a variety of applications, for example to create STSs (sequence tagged sites) for radiation hybrid mapping (5), or to amplify sequences for single nucleotide polymor-phism discovery (6). Primer3 can also select single primers for sequencing reactions and can design oligonucleotide hybridization probes. In selecting oligos for primers or hybridization probes, Primer3 can consider many factors. These include oligo melting temperature, length, GC content , 3′ stability, estimated secondary structure, the likelihood of annealing to or amplifying undesirable sequences (for example interspersed repeats), the likelihood of primer–dimer formation between two copies of the same primer, and the accuracy of the source sequence. In the design of primer pairs Primer3 can consider product size and melting temperature, the likelihood of primer– dimer formation between the two primers in the pair, the difference between primer melting temperatures, and primer location relative to particular regions of interest or to be avoided.

16,407 citations


"Genome-Wide Survey and Expression A..." refers methods in this paper

  • ...Gene-specific primers for soybean GmNAC genes were designed using the Primer3 software.(41) Primer specificity was first confirmed by blasting each primer sequence against the soybean genome (Glyma1 model)....

    [...]

Journal ArticleDOI
TL;DR: The goal is to combine kinetic and kinematic data to examine translational motions during microgravity adaptations to encourage fine-control motions as these reduce the risk of injury and increase controllability.
Abstract: Introduction: Astronauts soaring through space modules with the grace of birds seems counterintuitive. How do they adapt to the weightless environment? Previous spaceflights have shown that astronauts in orbit adapt their motor strategies to each change in their gravitational environment. During adaptation, performance is degraded and can lead to mission-threatening injuries. If adaptation can occur before a mission, productivity during the mission might improve, minimizing risk. The goal is to combine kinetic and kinematic data to examine translational motions during microgravity adaptations. Methods: Experiments were performed during parabolic flights aboard NASA's C-9. Five subjects used their legs to push off from a sensor, landing on a target 3.96 m (13 ft) away. The sensor quantified the kinetics during contact, while four cameras recorded kinematics during push-off. Joint torques were calculated for a subset of traverses (N = 50) using the forces, moments, and joint angles. Results: During the 149 traverses, the average peak force exerted onto the sensor was 224.6 ± 74.6 N, with peak values ranging between 65.8―461.9 N. Two types of force profiles were observed, some having single, strong peaks (N = 64) and others having multiple, weaker peaks (N = 86). Conclusions: The force data were consistent with values recorded previously in sustained microgravity aboard Mir and the Space Shuttle. A training program for astronauts might be designed to encourage fine-control motions (i.e., multiple, weaker peaks) as these reduce the risk of injury and increase controllability. Additionally, a kinematic and kinetic sensor suite was successfully demonstrated in the weightless environment onboard the C-9 aircraft.

5,639 citations

Journal ArticleDOI
14 Jan 2010-Nature
TL;DR: An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.
Abstract: Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.

3,743 citations


"Genome-Wide Survey and Expression A..." refers methods in this paper

  • ...Primer specificity was first confirmed by blasting each primer sequence against the soybean genome (Glyma1 model).(32) We performed subsequent analysis of melting curves and visualization of amplicon fragments....

    [...]

Related Papers (5)