scispace - formally typeset
Search or ask a question
Journal ArticleDOI

GeoChemFoam: Direct Modelling of Multiphase Reactive Transport in Real Pore Geometries with Equilibrium Reactions

11 Aug 2021-Transport in Porous Media (Springer Netherlands)-Vol. 139, Iss: 2, pp 271-299
TL;DR: In this article, a multiphase reactive transport solver for simulations on complex pore geometries, including microfluidic devices and micro-CT images, and its implementation in GeoChemFoam is presented.
Abstract: GeoChemFoam is an open-source OpenFOAM-based toolbox that includes a range of additional packages that solve various flow processes from multiphase transport with interface transfer, to single-phase flow in multiscale porous media, to reactive transport with mineral dissolution. In this paper, we present a novel multiphase reactive transport solver for simulations on complex pore geometries, including microfluidic devices and micro-CT images, and its implementation in GeoChemFoam. The geochemical model includes bulk and surface equilibrium reactions. Multiphase flow is solved using the Volume-Of-Fluid method, and the transport of species is solved using the continuous species transfer method. The reactive transport equations are solved using a sequential operator splitting method, with the transport step solved using GeoChemFoam, and the reaction step solved using Phreeqc, the US geological survey’s geochemical software. The model and its implementation are validated by comparison with analytical solutions in 1D and 2D geometries. We then simulate multiphase reactive transport in two test pore geometries: a 3D pore cavity and a 3D micro-CT image of Bentheimer sandstone. In each case, we show the pore-scale simulation results can be used to develop upscaled models that are significantly more accurate than standard macro-scale equilibrium models.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article , a computational framework has been developed to couple the solution of the hydrodynamics of multiphase flow using Computational Fluid Dynamics (CFD) with the detailed description of the surface reactivity through first-principles microkinetic models.
Abstract: The analysis of catalytic processes and the development of innovative technologies require a deep comprehension of the complex interplay between the intrinsic functionality of the heterogeneous material and the surrounding environment in the reactor. This is particularly important for multiphase catalytic reactors where complex interactions among the phases distribution, the inter- and intra-phase transport and the catalytic material occur. In this work, a computational framework has been developed to couple the solution of the hydrodynamics of multiphase flow using Computational Fluid Dynamics (CFD) with the detailed description of the surface reactivity through first-principles microkinetic models. In particular, the methodology employs an algebraic Volume-Of-Fluid (VOF) approach for the advection of the phases and takes advantage of the Compressive-Continuous Species Transfer (CST) for the modeling of the species mass interfacial transfer. The heterogeneous chemistry is included as source terms to the mass and energy equations acting at the catalytic surface, while the solution of the mass balance equation employs an operator splitting approach. The numerical framework has been assessed with respect to simple geometries by direct comparison with analytical and fully coupled solutions followed by examples of application in the context of the nitrobenzene hydrogenation to aniline. The envisioned approach is the first step toward the first-principles-based multiscale analysis of multiphase catalytic processes paving the way toward the detailed understanding and development of innovative and intensified technologies.

7 citations

Journal ArticleDOI
TL;DR: A brief review of recent developments and applications of reactive transport modeling to study geochemically driven processes and alteration in porous media is provided in this article , with a perspective on opportunities and challenges for continuously developing and expanding the role of this valuable methodology to advance fundamental understanding and transferable knowledge of various dynamic geochemical systems.

5 citations

Journal ArticleDOI
TL;DR: In this paper , two novel volume-of-solid (VoS) formulations for micro-continuum simulation of mineral dissolution at the pore-scale are presented. But the main limitation of this formulation is that accuracy is strongly dependent on the choice of the localization function.
Abstract: We present two novel Volume-of-Solid (VoS) formulations for micro-continuum simulation of mineral dissolution at the pore-scale. The traditional VoS formulation (VoS-ψ) uses a diffuse interface localization function ψ to ensure stability and limit diffusion of the reactive surface. The main limitation of this formulation is that accuracy is strongly dependent on the choice of the localization function. Our first novel improved formulation (iVoS) uses the divergence of a reactive flux to localize the reaction at the fluid-solid interface, so no localization function is required. Our second novel formulation (VoS-ψ′) uses a localization function with a parameter that is fitted to ensure that the reactive surface area is conserved globally. Both novel methods are validated by comparison with experiments, numerical simulations using an interface tracking method based on the Arbitrary Eulerian Lagrangian (ALE) framework, and numerical simulations using the VoS-ψ. All numerical methods are implemented in GeoChemFoam, our reactive transport toolbox and three benchmark test cases in both synthetic and real pore geometries are considered: 1) dissolution of a calcite post by acid injection in a microchannel and experimental comparison, 2) dissolution in a 2D polydisperse disc micromodel at different dissolution regimes and 3) dissolution in a Ketton carbonate rock sample and comparison to in-situ micro-CT experiments. We find that the iVoS results match accurately experimental results and simulation results obtained with the ALE method, while the VoS-ψ method leads to inaccuracies that are mostly corrected by the VoS-ψ’ formulation. In addition, the VoS methods are significantly faster than the ALE method, with a speed-up factor of between 2 and 12.

5 citations

Journal ArticleDOI
TL;DR: Li et al. as discussed by the authors proposed boundary schemes for the continuum species transport-lattice Boltzmann (CST-LB) mass transport model and the multicomponent pseudopotential model to simulate heterogeneous chemical reactions in a multiphase system.
Abstract: Multiphase reactive transport in porous media is an important component of many natural and engineering processes. In the present study, boundary schemes for the continuum species transport-lattice Boltzmann (CST-LB) mass transport model and the multicomponent pseudopotential model are proposed to simulate heterogeneous chemical reactions in a multiphase system. For the CST-LB model, a lattice-interface-tracking scheme for the heterogeneous chemical reaction boundary is provided. Meanwhile, a local-average virtual density boundary scheme for the multicomponent pseudopotential model is formulated based on the work of Li et al. [Li, Yu, and Luo, Phys. Rev. E 100, 053313 (2019)10.1103/PhysRevE.100.053313]. With these boundary treatments, a numerical implementation is put forward that couples the multiphase fluid flow, interfacial species transport, heterogeneous chemical reactions, and porous matrix structural evolution. A series of comparison benchmark cases are investigated to evaluate the numerical performance for different pseudopotential wetting boundary treatments, and an application case of multiphase dissolution in porous media is conducted to validate the present models' ability to solve complex problems. By applying the present LB models with reasonable boundary treatments, multiphase reactive transport in various natural or engineering scenarios can be simulated accurately.

2 citations

Journal ArticleDOI
TL;DR: In this article , a robust simulation framework based on the level-set method is proposed to simulate the injection of a vaporized solvent (i.e., propane) into a bitumen-oil system.

1 citations

References
More filters
Book
01 Jan 1985
TL;DR: The forces between atoms and molecules are discussed in detail in this article, including the van der Waals forces between surfaces, and the forces between particles and surfaces, as well as their interactions with other forces.
Abstract: The Forces between Atoms and Molecules. Principles and Concepts. Historical Perspective. Some Thermodynamic Aspects of Intermolecular Forces. Strong Intermolecular Forces: Covalent and Coulomb Interactions. Interactions Involving Polar Molecules. Interactions Involving the Polarization of Molecules. van der Waals Forces. Repulsive Forces, Total Intermolecular Pair Potentials, and Liquid Structure. Special Interactions. Hydrogen-Bonding, Hydrophobic, and Hydrophilic Interactions. The Forces between Particles and Surfaces. Some Unifying Concepts in Intermolecular and Interparticle Forces. Contrasts between Intermolecular, Interparticle, and Intersurface Forces. van der Waals Forces between Surfaces. Electrostatic Forces between Surfaces in Liquids. Solvation, Structural and Hydration Forces. Steric and Fluctuation Forces. Adhesion. Fluid-Like Structures and Self-Assembling Systems. Micelles, Bilayers, and Biological Membranes. Thermodynamic Principles of Self-Assembly. Aggregation of Amphiphilic Molecules into Micelles, Bilayers, Vesicles, and Biological Membranes. The Interactions between Lipid Bilayers and Biological Membranes. References. Index.

18,048 citations

Journal ArticleDOI
TL;DR: In this paper, the concept of a fractional volume of fluid (VOF) has been used to approximate free boundaries in finite-difference numerical simulations, which is shown to be more flexible and efficient than other methods for treating complicated free boundary configurations.

11,567 citations

Journal ArticleDOI
TL;DR: In this paper, a force density proportional to the surface curvature of constant color is defined at each point in the transition region; this force-density is normalized in such a way that the conventional description of surface tension on an interface is recovered when the ratio of local transition-reion thickness to local curvature radius approaches zero.

7,863 citations

Journal ArticleDOI
TL;DR: In this article, a non-iterative method for handling the coupling of the implicitly discretised time-dependent fluid flow equations is described, based on the use of pressure and velocity as dependent variables and is hence applicable to both the compressible and incompressible versions of the transport equations.

4,019 citations

Journal ArticleDOI
TL;DR: The tracer diffusion coefficients of ions in deep-sea sediments, Dj,sed., can be related to Dj∗ by as mentioned in this paper, where θ is the tortuosity of the bulk sediment and a constant close to one.

2,648 citations