scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Geochemistry of trace metals in a fresh water sediment : Field results and diagenetic modeling

01 Aug 2007-Science of The Total Environment (Elsevier)-Vol. 381, Iss: 1, pp 263-279
TL;DR: Pore water and sediment analyses indicate a shift in trace metal speciation from oxide-bound to sulfide-bound over the upper 20 cm of the sediment, and sensitivity analyses show that increased bioturbation and sulfate availability, expected upon restoration of estuarine conditions in the lake, should increase the sulfide bound fractions of Zn and Ni in the sediments.
About: This article is published in Science of The Total Environment.The article was published on 2007-08-01 and is currently open access. It has received 93 citations till now. The article focuses on the topics: Trace metal & Bioirrigation.

Summary (4 min read)

1. Introduction

  • In freshwater sediments, sulfide mineral phases may also immobilize trace metals, despite the lower sulfate concentrations relative to marine systems (Huerta-Diaz et al., 1998; Motelica-Heino et al., 2003).
  • Others have applied multi-component RTMs to assess metal sulfide oxidation (Carbonaro et al., 2005; Di Toro et al., 1996) and the controls on arsenic mobility in sediments (Smith and Jaffe, 1998).
  • A better understanding of trace metal behavior in sediments is needed to guide management efforts to improve water quality and ecosystem health of the lake.

2. Study site

  • In 1970, the Haringvliet estuary was converted to a freshwater lake by building a dam at the outlet to the North Sea (Fig. 1).
  • A partial restoration of estuarine conditions is proposed for Haringvliet Lake, beginning in 2008.
  • Changes in management of the dam will allow water from the adjacent North Sea to enter the lake at high tide.
  • Trace metal contamination has adversely affected benthic communities in sediments of the Rhine–Meuse Delta where low species diversity has been correlated with sediment toxicity including elevated trace metal Netherlands with a box denoting the location of the detail section.
  • Concentrations (Reinhold-Dudok van Heel and den Besten, 1999).

3.1. Sample collection

  • Sediment and pore water samples were collected in September 2002, and April–May 2003.
  • The sampling periods are referred to as late-summer, and spring, respectively.
  • Sediment was collected using a cylindrical box corer, with a 31 cm inner diameter, deployed from RV Navicula.
  • Subcores were taken with polycarbonate tubes (10 cm i.d.).
  • Sub-cores for pore water and solid phase analysis were taken from a single box core and immediately sectioned in a N2 purged glove box on board the ship.

3.2. Pore water analyses

  • Sediment sub-samples for pore water collection were placed in polyethylene centrifuge tubes in a N2 purged glove box during core sectioning.
  • Sulfide was measured colorimeterically (Cline, 1969) using filtered pore water fixed with NaOH (10 μl 1 M NaOH per ml).
  • The pore water concentration was then derived from the estimated diffusive flux through the gel following the established procedure (e.g. Zhang et al., 1995; Naylor et al., 2004).
  • The probes were inserted into sediment cores and incubated for 24 h in the temperature controlled shipboard laboratory.
  • Following incubation, the agarose gel was removed from each individual compartment and eluted in 1 ml 1MHNO3.

3.3. Solid phase analyses

  • Sediment water content and density were determined from the weight loss upon freeze drying, allowing for the determination of sediment porosity.
  • Total carbon, total sulfur, and organic carbon (Corg; following carbonate removal with 1 M HCl) were determined on freeze-dried sediment using an elemental analyzer (LECO SC-1440H).
  • Analysis ofmetals in all extractants was carried out with ICP-MS unless otherwise noted.
  • It is important to note that AVS includes a range of sulfide containing compounds (Rickard and Morse, 2005).
  • The reactive pool extraction in the HuertaDiaz and Morse (1990) method (1 M HCl) is less specific, as it also mobilizes reactive Fe(II) phases (Kostka and Luther, 1994).

3.4. Modeling

  • Reaction-transport model calculationswere carried out with the Biogeochemical Reaction Network Simulator (BRNS; Aguilera et al., 2005; Jourabchi et al., 2005).
  • The discussion of reaction and transport processes in this paper is limited to those that directly involve the trace metals.
  • The model describes 1-D sediment profiles at steady-state.
  • The ability of thermodynamic modeling to predict the speciation of dissolved metals is limited by the use of pure, end-member solid phases and, the limited knowledge of metal–sulfide stability constants.

4.1. Porewater

  • Pore water DOC displayed a gradual increase with depth in late-summer, while a subsurface maximum was observed in spring (Fig. 2).
  • Pore water analyses based on the DGT method indicated the presences of free sulfide in the upper 10 cm of sediment.
  • The pore water concentrations of Zn, Pb, and Cd were similar for the two sampling times.
  • Pore water profiles of Co and Ni resembled those of Mn, for both sampling periods.

4.2. SPM metal content

  • Trace metals in the water column of the Haringvliet Lake are mainly associated with the SPM.
  • Concentrations of solid-phase Zn, Ni, Pb, and Cd in the upper 2 cm of sediment exhibit the same order of abundance and the same magnitudes as in the lake SPM (Fig. 4).
  • Concentrations of Fe and Mn in the SPM varied independently from one another (Fig. 5), as previously observed at other sites in the Rhine–Meuse Delta (Paalman and van der Weijden, 1992).
  • The SPM trace metal concentrations varied substantially in the period 2000–2004, with coefficients of variation ranging from 17% for Zn to 55% for Cd (see error bars on Fig. 4).
  • The trace metal SPM concentrations displayed negative correlations with SPMorganicmatter content; indicating that organicmatter produced in the lake during algae blooms had a lower trace metal content than the terrestrially derived SPM.

4.3. Sediment solid phase

  • The sediment is highly porous, fined grained and organic rich (Table 1).
  • The total sediment profiles of Corg, Fe, Mn, Zn, Pb, Co, and Cd displayed little variation with depth, particularly in the upper 10 cm of sediment (Fig. 6).
  • As expected, the AVS-SEMconcentrationswere lower than the respective total concentrations (Fig. 6).
  • The concentrations of CDB extractable Fe, Ni, and Co declined more sharply with depth than the ascorbate extractable concentrations.

5.1. Pore water profiles

  • The build up of alkalinity in the pore waters reflects Corg mineralization (Fig. 2).
  • The authors previous work has shown that sulfate reduction is an important mineralization pathway (Canavan et al., 2006), which explains the rapid depletion of pore water SO4 2− and the presence of measurable free sulfide.
  • The pore water profiles of Zn, Pb, and Cd show a near-surface enrichment in spring (Fig. 2).
  • For Zn and Pb, the reductive extraction results imply that the near-surface pore water enrichments can, in part, be explained by reductive dissolution of reactive Fe and Mn oxide phases close to the sediment–water interface.
  • The concentration ratios of Mn to Co and Ni in the pore waters (approximately 2000 and 700, respectively) are much higher than those measured in the reductive extractions (Mn:Co=100–450 and Mn:Ni=50–155).

5.2. Sediment solid phase

  • The correlations of sediment Corg, Al, and Fe concentrations with grain size b63 μm (Table 1) indicate a close association of OM, metal oxides and clay minerals (Tessier et al., 1996).
  • The concentrations of target values for of the Dutch Soil Protection Although pore water profiles suggest diagenetic remobilization may occur in the sediment (Fig. 2), those processes to not result in a redistribution of the total sediment concentration profiles, with the exceptions of S and possibly Ni (Fig. 6).
  • The decreasing concentrations with increasing depth of the ascorbate and CDB extractable Fe pools are consistent with reductive dissolution of Fe(III) in the sediment (Fig. 7).
  • The progressive decrease with depth of the ascorbate and CDB extractable concentrations of Mn, Zn, Ni, and Co also indicate release from reducible mineral phases (Fig. 7).

5.3. Diagenetic modeling

  • The second fractio to both oxide pools 3 Oxide formation Mn2+ and Fe2+ can oxidatively precipita trace metal with the same oxideQtrace m 4 Bioirrigation ZnS concentrations rresponds with that given in Fig. 10 f Fe-oxides (Zn), Mn-oxides (Ni), or FeS2 (Ni) by a ratio derived from eductive dissolution.
  • In a simulation run without ZnS oxidation the flux of dissolved Zn2+ across the SWI changed from an efflux of 24 nmol cm−2 yr−1 to an influx of 9 nmol cm−2 yr−1 into the sediment.
  • Ni is estimated at 833 through model fitting of the pore water Ni2+ profile, also known as The ratio of FeS.
  • The simulated changes to sediment processes resulting from estuarine restoration are shown to have a greater effect on the solid phase speciation than on metal efflux.

6. Conclusions

  • The Haringvliet Lake sediment exhibits elevated concentrations of trace metals (Cd, Co, Ni, Pb, and Zn) derived from riverine suspended particles.
  • Results of extractions show declining concentrations of reducible phases and an increase in sulfide species with depth.
  • Pore waters are supersaturated with respect to Zn, Pb, Co, and Cd monosulfides, while Ni and Co are found to be associated with pyrite.
  • These results illustrate a transition from oxide-bound to sulfide-bound trace metals with depth in the sediment.
  • Total metal sediment profiles suggest that little metal release from the sediment is occurring with the possible exception of Ni. Diagenetic model simulations predict a greater mobility of Ni than Zn, as Ni does not form stable metal-sulfides, and is more slowly removed by oxidative precipitation at the sediment surface.

Did you find this useful? Give us your feedback

Figures (13)
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the accumulation of Fe, Mg, Mn, Zn, Cu, Cr, Ni, and Pb, their fractions, physiochemical parameters, and nutrients were evaluated in the surface sediments at eleven sites on the Xiaoyang River in urban and suburban locations in Jiangsu, China for the assessment of pollution.
Abstract: Some metal species and fractions have high affinity to anthropogenic activities, making it feasible to characterize the spatiotemporal characteristics of human induced degradation of ecosystems. The accumulation of Fe, Mg, Mn, Zn, Cu, Cr, Ni, and Pb, their fractions, physiochemical parameters, and nutrients were evaluated in the surface sediments at eleven sites on the Xiaoyang River in urban and suburban locations in Jiangsu, China for the assessment of pollution. The sediment quality was evaluated based on sediment quality guidelines, enrichment factors, the geoaccumulation index, the potential ecological risk index, and risk assessment code. Principal component analysis and cluster analysis were employed to identify the sources of the metals. The total concentrations of metals, enrichment factors, and geoaccumulation indices demonstrated that all sites were significantly polluted with Zn and significantly to moderately polluted by Cu, Pb, and Ni. Moreover, higher metal enrichment was present do...

5 citations


Cites background from "Geochemistry of trace metals in a f..."

  • ...High environmental risks of heavy metals related to their higher availability in the exchangeable fraction had been found to pose an adverse impact on aquatic biota (Canavan et al. 2007)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the concentrations of trace metals in sewage water and sludge samples from River Kubanni drainage basin in Zaria City, Nigeria were investigated in three month sampling periods, that is, February - April, 2008 (peak of dry season and period of intensive usage of the sewage water), the speciation of metals in the sewage sludge from the drainage basin, and the risk to sewage water column contamination were evaluated.
Abstract: The concentrations of trace metals in sewage water and sludge samples from River Kubanni drainage basin in Zaria City, Nigeria were investigated in this study. The drainage basin is utilized as a source for irrigation water, during dry seasons. The sewage water quality characteristics in three month sampling periods, that is, February - April, 2008 (peak of dry season and period of intensive usage of the sewage water), the speciation of metals in the sewage sludge from the drainage basin, and the risk to sewage water column contamination were evaluated. The sewage water quality characteristics were mostly beyond the recommended irrigation water standards by the food and agriculture organization (FAO) and United State environmental protection agency (USEPA) except for zinc and nickel. In addition, the average values of Cd, Cu, Pb, Cl - and NO 3 - in sewage water samples analyzed were higher than the respective reference values for irrigation water. To study the speciation of metals in sewage sludge, five metals (Zn, Ni, Cu, Pb and Cd) in the sludge were subjected to sequential extractions. The metals analyzed were distributed in both the non-residual and residual phases. Total extractable trace metals in sewage sludge were: Zn (403.3 mg/kg dry weight), Ni (184.2 mg/kg dry weight), Cu (303.4 mg/kg dry weight), Pb (129.0 mg/kg dry weight) and Cd (19.7 mg/kg dry weight). However, there was low risk to sewage water contamination based on the calculated individual contamination factors (ICF) obtained for sewage sludge from the trace metal sequential extractions. From the calculated individual contamination factors, Ni and Zn followed by Cd and Pb posed the highest risk to sewage water contamination. Based on this study, the human health is at risk, since sewage water from the drainage basin has been the source for irrigation water during dry seasons, which might lead to trace metal ingestion by soil and subsequently by vegetables. Thus, this might become important pathways of human exposure to metal contamination. Key words: Trace metals, speciation, contamination factor, sewage water and sludge.

5 citations

Journal ArticleDOI
TL;DR: The ironstone lenses of Ga’ara area are enclosed within the uppermost part of the clastic succession of Permocarboniferous Ga'ara Formation as discussed by the authors.

5 citations

Dissertation
16 Dec 2012
TL;DR: In this article, the authors quantified the magnitude of organic and metal contaminant facilitated transport from the sediment to the water column due to gas ebullition at 14 urban waterway locations.
Abstract: Cd, Cr, Pb, Ag, As, Ba, Hg, CH3Hg and CN transport through sand (25 cm), granular activated carbon (GAC, 2 cm), organoclay (2 cm), shredded tires (10 cm) and apatite (2 cm) caps was modeled by deterministic and Monte Carlo methods. Effective caps prevented above-cap concentrations from exceeding USEPA acute criteria at 100 yr assuming below-cap concentrations at solubility. Sand caps performed best under diffusion due to the greater diffusive path length. Apatite had the best advective performance for Cd, Cr and Pb. Organoclay performed best for Ag, As, Ba, CH3Hg and CN. Organoclay and apatite were equally effective for Hg. Monte Carlo analysis was used to determine output sensitivity. Sand was effective under diffusion for Cr within the 50% confidence interval (CI), for Cd and Pb (75% CI) and for As, Hg and CH3Hg (95% CI). Under diffusion and advection, apatite was effective for Cd, Pb and Hg (75% CI) and organoclay for Hg and CH3Hg (50% CI). GAC and shredded tires performed relatively poorly. Although no single cap is a panacea, apatite and organoclay have the broadest range of effectiveness. Cap performance is most sensitive to the partitioning coefficient and hydraulic conductivity, indicating the importance of accurate site-specific measurement for these parameters. This study also quantified the magnitude of organic and metal contaminant facilitated transport from the sediment to the water column due to gas ebullition at 14 urban waterway locations. The magnitude of the ebullition-facilitated measured fluxes indicates that gas ebullition is an important pathway for release of both polycyclic aromatic hydrocarbons (PAHs) and heavy metals from buried sediments in urban freshwater systems. Comparison of direct benthic release rates to ebullition facilitated rates suggests that total PAHs are released at significantly greater rates by biogenic gas production. Although the increase in release rate is not as great for metals, ebullition facilitated release rates are frequently greater than benthic release. Mechanistic and empirical models developed in this study may be used to predict in situ gas ebullition flux and ebullition-facilitated contaminant flux.

5 citations

Journal ArticleDOI
TL;DR: This study shows that extreme drought is recorded as a lasting geochemical signature in estuarine sediments, demonstrating that metal and rare earth element geochemistry provides insights into the distribution and behaviour of contaminants mobilised into dynamic, anthropogenically altered estuaries.

4 citations

References
More filters
Book
17 Mar 1994
TL;DR: In this article, an introduction to modern soil chemistry describes chemical processes in soils in terms of established principles of inorganic, organic, and physical chemistry, providing an understanding of the structure of the solid mineral and organic materials from which soils are formed.
Abstract: This introduction to modern soil chemistry describes chemical processes in soils in terms of established principles of inorganic, organic, and physical chemistry. The text provides an understanding of the structure of the solid mineral and organic materials from which soils are formed, and explains such important processes as cation exchange, chemisorption and physical absorption of organic and inorganic ions and molecules, soil acidification and weathering, oxidation-reduction reactions, and development of soil alkalinity and swelling properties. Environmental rather than agricultural topics are emphasized, with individual chapters on such pollutants as heavy metals, trace elements, and inorganic chemicals.

6,735 citations

Journal ArticleDOI
TL;DR: Winkler and Carpenter as mentioned in this paper proposed a modification of the Winkler method for the detection of dissolved oxygen in seawater, which has been shown to be more accurate than the original method.
Abstract: Winkler method for dissolved oxygen analysis. Limnol. Oceanog., 10: 135-140. CARRITT, D. E., AND J. H. CARPENTER. 1966. Comparison and evaluation of currently employed modifications of the Winkler method for determining dissolved oxygen in seawater; a NASCO report. J. Marine Res., 24: 286318. CLINE, J. D. 1968. Kinetics of the sulfide-oxygen reaction in seawater; An investigation at constant temperature and salinity. M.S. Thesis, Univ. Washington, Seattle. 68 p. CUSTER, J. J., AND S. NATELSO?\T. 1949. Spectrophotometric determination of microquantities of iodine. Anal. Chem., 21: 1005-1009. THOMPSON, T. G., AND R. J. ROBINSON. 1939. Notes on the determination of dissolved oxygen in sea water. J. Marine Res., 2: 1-8. WHEATLAND, A. B., AND L. J. SMITH. 1955. Gasometric determination of dissolved oxygen in pure and saline water as a check of titrimetric methods. J. Appl. Chem. (London), 5: 144-148. WINKLER, L. W. 1888. Die Bestimmung des im Wasser gelosten Sauerstoffes. Chem. Ber., 21: 2843-2855.

3,317 citations


"Geochemistry of trace metals in a f..." refers methods in this paper

  • ...Sulfide was measured colorimeterically (Cline, 1969) using filtered pore water fixed with NaOH (10 μl 1 M NaOH per ml)....

    [...]

  • ...The released H2S was trapped in a 1 M NaOH solution from which sulfide concentrations were determined colorimetrically (Cline, 1969)....

    [...]

01 Mar 1991
TL;DR: The report describes how to use the MINTEQA2 model, a geochemical speciation model capable of computing equilibria among the dissolved, adsorbed, solid, and gas phases in an environmental setting, which includes an extensive database of reliable thermodynamic data.
Abstract: The attention of environmental decision makers is increasingly being focused on the movement of pollutants into ground water. Of particular importance is the transport and speciation of metals. The MINTEQA2 model is a versatile, quantitative tool for predicting the equilibrium behavior of metals in a variety of chemical environments. MINTEQA2 is a geochemical speciation model capable of computing equilibria among the dissolved, adsorbed, solid, and gas phases in an environmental setting. MINTEQA2 includes an extensive database of reliable thermodynamic data that is also accessible to PRODEFA2, an interactive program designed to be executed prior to MINTEQA2 for the purpose of creating the required MINTEQA2 input file. The report describes how to use the MINTEQA2 model. The chemical and mathematical structure of MINTEQA2 and the structure of the database files also are described. The use of both PRODEFA2 and MINTEQA2 are illustrated through the presentation of an example PRODEFA2 dialogue reproduced from interactive sessions and the presentation of MINTEQA2 output files and error diagnostics. The content and format of database files also are explained.

1,830 citations


"Geochemistry of trace metals in a f..." refers methods in this paper

  • ...Thermodynamic speciation calculations were conducted using Visual MINTEQ (Version 2.4, this program is an adaptation of MINTEQA2; Allison et al., 1991)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, it was shown that acid volatile sulfide (AVS) is the sediment phase that determines the LC50 for cadmium in the marine sediments tested.
Abstract: The toxicity of chemicals in sediments is influenced by the extent that chemicals bind to the sediment. It is shown that acid volatile sulfide (AVS) is the sediment phase that determines the LC50 for cadmium in the marine sediments tested. Although it is well known that metals can form insoluble sulfides, it apparently has not been recognized that AVS is a reactive pool of solid phase sulfide that is available to bind with metals. Amphipod sediment toxicity tests were conducted in the laboratory and the observed amphipod LC50s on a normalized cadmium concentration basis, [Cd]/[AVS], is the same for sediments with over an order of magnitude difference in dry weight normalized cadmium LC50s. Because other toxic metals also form insoluble sulfides, it is likely that AVS is important in determining their toxicity in sediments as well. Most freshwater and marine sediments contain sufficient acid volatile sulfide for this phase to be the predominant determinant of toxicity. The other sorption phases are expected to be important only for low AVS sediments, for example, fully oxidized sediments. From the point of view of sediment quality criteria the other sorption phases would be important for metals with large partition coefficients and large chronic water quality criteria.

800 citations


"Geochemistry of trace metals in a f..." refers background in this paper

  • ...Additionally, FeS may also bind Ni and Co (Huerta-Diaz et al., 1998; Morse and Arakaki, 1993), while Zn, Pb, and Cd may substitute for Fe resulting in trace metal monosulfides (Di Toro et al., 1990)....

    [...]

Journal ArticleDOI
TL;DR: A considerable body of observational data has accumulated that indicates very different behavior for various trace metals in sulfidic sediments as mentioned in this paper, but also reflect differences in ligand exchange reaction kinetics, and redox reaction pathways.

723 citations


"Geochemistry of trace metals in a f..." refers background in this paper

  • ...The low DTMP values found for Mn (Table 2) are characteristic for sediments with DOP values less than 35% (Morse and Luther, 1999)....

    [...]

Frequently Asked Questions (1)
Q1. What have the authors contributed in "Geochemistry of trace metals in a fresh water sediment: field results and diagenetic modeling" ?

Canavan et al. this paper measured trace metal concentrations in pore water and sediment of a coastal fresh water lake ( Haringvliet Lake, The Netherlands ).