scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Geochemistry of trace metals in a fresh water sediment : Field results and diagenetic modeling

01 Aug 2007-Science of The Total Environment (Elsevier)-Vol. 381, Iss: 1, pp 263-279
TL;DR: Pore water and sediment analyses indicate a shift in trace metal speciation from oxide-bound to sulfide-bound over the upper 20 cm of the sediment, and sensitivity analyses show that increased bioturbation and sulfate availability, expected upon restoration of estuarine conditions in the lake, should increase the sulfide bound fractions of Zn and Ni in the sediments.
About: This article is published in Science of The Total Environment.The article was published on 2007-08-01 and is currently open access. It has received 93 citations till now. The article focuses on the topics: Trace metal & Bioirrigation.

Summary (4 min read)

1. Introduction

  • In freshwater sediments, sulfide mineral phases may also immobilize trace metals, despite the lower sulfate concentrations relative to marine systems (Huerta-Diaz et al., 1998; Motelica-Heino et al., 2003).
  • Others have applied multi-component RTMs to assess metal sulfide oxidation (Carbonaro et al., 2005; Di Toro et al., 1996) and the controls on arsenic mobility in sediments (Smith and Jaffe, 1998).
  • A better understanding of trace metal behavior in sediments is needed to guide management efforts to improve water quality and ecosystem health of the lake.

2. Study site

  • In 1970, the Haringvliet estuary was converted to a freshwater lake by building a dam at the outlet to the North Sea (Fig. 1).
  • A partial restoration of estuarine conditions is proposed for Haringvliet Lake, beginning in 2008.
  • Changes in management of the dam will allow water from the adjacent North Sea to enter the lake at high tide.
  • Trace metal contamination has adversely affected benthic communities in sediments of the Rhine–Meuse Delta where low species diversity has been correlated with sediment toxicity including elevated trace metal Netherlands with a box denoting the location of the detail section.
  • Concentrations (Reinhold-Dudok van Heel and den Besten, 1999).

3.1. Sample collection

  • Sediment and pore water samples were collected in September 2002, and April–May 2003.
  • The sampling periods are referred to as late-summer, and spring, respectively.
  • Sediment was collected using a cylindrical box corer, with a 31 cm inner diameter, deployed from RV Navicula.
  • Subcores were taken with polycarbonate tubes (10 cm i.d.).
  • Sub-cores for pore water and solid phase analysis were taken from a single box core and immediately sectioned in a N2 purged glove box on board the ship.

3.2. Pore water analyses

  • Sediment sub-samples for pore water collection were placed in polyethylene centrifuge tubes in a N2 purged glove box during core sectioning.
  • Sulfide was measured colorimeterically (Cline, 1969) using filtered pore water fixed with NaOH (10 μl 1 M NaOH per ml).
  • The pore water concentration was then derived from the estimated diffusive flux through the gel following the established procedure (e.g. Zhang et al., 1995; Naylor et al., 2004).
  • The probes were inserted into sediment cores and incubated for 24 h in the temperature controlled shipboard laboratory.
  • Following incubation, the agarose gel was removed from each individual compartment and eluted in 1 ml 1MHNO3.

3.3. Solid phase analyses

  • Sediment water content and density were determined from the weight loss upon freeze drying, allowing for the determination of sediment porosity.
  • Total carbon, total sulfur, and organic carbon (Corg; following carbonate removal with 1 M HCl) were determined on freeze-dried sediment using an elemental analyzer (LECO SC-1440H).
  • Analysis ofmetals in all extractants was carried out with ICP-MS unless otherwise noted.
  • It is important to note that AVS includes a range of sulfide containing compounds (Rickard and Morse, 2005).
  • The reactive pool extraction in the HuertaDiaz and Morse (1990) method (1 M HCl) is less specific, as it also mobilizes reactive Fe(II) phases (Kostka and Luther, 1994).

3.4. Modeling

  • Reaction-transport model calculationswere carried out with the Biogeochemical Reaction Network Simulator (BRNS; Aguilera et al., 2005; Jourabchi et al., 2005).
  • The discussion of reaction and transport processes in this paper is limited to those that directly involve the trace metals.
  • The model describes 1-D sediment profiles at steady-state.
  • The ability of thermodynamic modeling to predict the speciation of dissolved metals is limited by the use of pure, end-member solid phases and, the limited knowledge of metal–sulfide stability constants.

4.1. Porewater

  • Pore water DOC displayed a gradual increase with depth in late-summer, while a subsurface maximum was observed in spring (Fig. 2).
  • Pore water analyses based on the DGT method indicated the presences of free sulfide in the upper 10 cm of sediment.
  • The pore water concentrations of Zn, Pb, and Cd were similar for the two sampling times.
  • Pore water profiles of Co and Ni resembled those of Mn, for both sampling periods.

4.2. SPM metal content

  • Trace metals in the water column of the Haringvliet Lake are mainly associated with the SPM.
  • Concentrations of solid-phase Zn, Ni, Pb, and Cd in the upper 2 cm of sediment exhibit the same order of abundance and the same magnitudes as in the lake SPM (Fig. 4).
  • Concentrations of Fe and Mn in the SPM varied independently from one another (Fig. 5), as previously observed at other sites in the Rhine–Meuse Delta (Paalman and van der Weijden, 1992).
  • The SPM trace metal concentrations varied substantially in the period 2000–2004, with coefficients of variation ranging from 17% for Zn to 55% for Cd (see error bars on Fig. 4).
  • The trace metal SPM concentrations displayed negative correlations with SPMorganicmatter content; indicating that organicmatter produced in the lake during algae blooms had a lower trace metal content than the terrestrially derived SPM.

4.3. Sediment solid phase

  • The sediment is highly porous, fined grained and organic rich (Table 1).
  • The total sediment profiles of Corg, Fe, Mn, Zn, Pb, Co, and Cd displayed little variation with depth, particularly in the upper 10 cm of sediment (Fig. 6).
  • As expected, the AVS-SEMconcentrationswere lower than the respective total concentrations (Fig. 6).
  • The concentrations of CDB extractable Fe, Ni, and Co declined more sharply with depth than the ascorbate extractable concentrations.

5.1. Pore water profiles

  • The build up of alkalinity in the pore waters reflects Corg mineralization (Fig. 2).
  • The authors previous work has shown that sulfate reduction is an important mineralization pathway (Canavan et al., 2006), which explains the rapid depletion of pore water SO4 2− and the presence of measurable free sulfide.
  • The pore water profiles of Zn, Pb, and Cd show a near-surface enrichment in spring (Fig. 2).
  • For Zn and Pb, the reductive extraction results imply that the near-surface pore water enrichments can, in part, be explained by reductive dissolution of reactive Fe and Mn oxide phases close to the sediment–water interface.
  • The concentration ratios of Mn to Co and Ni in the pore waters (approximately 2000 and 700, respectively) are much higher than those measured in the reductive extractions (Mn:Co=100–450 and Mn:Ni=50–155).

5.2. Sediment solid phase

  • The correlations of sediment Corg, Al, and Fe concentrations with grain size b63 μm (Table 1) indicate a close association of OM, metal oxides and clay minerals (Tessier et al., 1996).
  • The concentrations of target values for of the Dutch Soil Protection Although pore water profiles suggest diagenetic remobilization may occur in the sediment (Fig. 2), those processes to not result in a redistribution of the total sediment concentration profiles, with the exceptions of S and possibly Ni (Fig. 6).
  • The decreasing concentrations with increasing depth of the ascorbate and CDB extractable Fe pools are consistent with reductive dissolution of Fe(III) in the sediment (Fig. 7).
  • The progressive decrease with depth of the ascorbate and CDB extractable concentrations of Mn, Zn, Ni, and Co also indicate release from reducible mineral phases (Fig. 7).

5.3. Diagenetic modeling

  • The second fractio to both oxide pools 3 Oxide formation Mn2+ and Fe2+ can oxidatively precipita trace metal with the same oxideQtrace m 4 Bioirrigation ZnS concentrations rresponds with that given in Fig. 10 f Fe-oxides (Zn), Mn-oxides (Ni), or FeS2 (Ni) by a ratio derived from eductive dissolution.
  • In a simulation run without ZnS oxidation the flux of dissolved Zn2+ across the SWI changed from an efflux of 24 nmol cm−2 yr−1 to an influx of 9 nmol cm−2 yr−1 into the sediment.
  • Ni is estimated at 833 through model fitting of the pore water Ni2+ profile, also known as The ratio of FeS.
  • The simulated changes to sediment processes resulting from estuarine restoration are shown to have a greater effect on the solid phase speciation than on metal efflux.

6. Conclusions

  • The Haringvliet Lake sediment exhibits elevated concentrations of trace metals (Cd, Co, Ni, Pb, and Zn) derived from riverine suspended particles.
  • Results of extractions show declining concentrations of reducible phases and an increase in sulfide species with depth.
  • Pore waters are supersaturated with respect to Zn, Pb, Co, and Cd monosulfides, while Ni and Co are found to be associated with pyrite.
  • These results illustrate a transition from oxide-bound to sulfide-bound trace metals with depth in the sediment.
  • Total metal sediment profiles suggest that little metal release from the sediment is occurring with the possible exception of Ni. Diagenetic model simulations predict a greater mobility of Ni than Zn, as Ni does not form stable metal-sulfides, and is more slowly removed by oxidative precipitation at the sediment surface.

Did you find this useful? Give us your feedback

Figures (13)
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, three sediment cores were collected in the Scheldt, Lys and Spiere canals, which drain a highly populated and industrialized area in Western Europe, and the speciation and the distribution of trace metals in pore waters and sediment particles were assessed through a combination of computational and experimental techniques.

112 citations


Cites background from "Geochemistry of trace metals in a f..."

  • ...Another sediment core was cut every 2 cm under nitrogen in a glove bag to prevent any oxidation of the reduced species present in the anoxic sediments....

    [...]

  • ...As a result, strong vertical gradients are evidenced for dissolved species concentrations in the vicinity of the water-sediment interface, resulting in the release or the trapping of trace metals in sediments (Audry et al., 2010; Canavan et al., 2007, Miller and Orbock Miller, 2007)....

    [...]

  • ...…make thermodynamic calculations a promising approach for the evaluation of trace ha l-0 09 22 20 0, v er si on 1 - 24 D ec 2 01 3 metal speciation (Billon et al., 2003; Canavan et al., 2007; Huerta-Diaz et al., 1998; LourinoCabana et al., 2010; Mayer et al., 2008; van den Berg et al., 1999)....

    [...]

  • ...Sediments were collected in November and December 2005 in the Scheldt River (at Helkijn) and two of its tributaries (the Lys River at Wervik and the Spiere Canal) (Figure 1)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, high resolution profiles of trace elements (Fe, Mn, Co, As, Cu, Cr, Ni and Pb) were assessed using the DET and DGT techniques in silty, organically enriched, sub-tidal sediments of the Belgian coast during late winter and spring 2008.

101 citations


Cites background from "Geochemistry of trace metals in a f..."

  • ...Several publications have indeed shown MnS is not a solute observed in most pore waters (Canavan et al., 2007; Huerta-Diaz et al., 1998; Morse and Luther, 1999; Billon et al., 2001)....

    [...]

Journal ArticleDOI
TL;DR: In this article, a numerical modeling approach is used as an alternative to quantify the major metabolic pathways of Corg oxidation (Cox) and associated fluxes of redox-sensitive species fluxes along a global ocean hypsometry, using the seafloor depth (SFD) as the master variable.
Abstract: [1] The global-scale quantification of organic carbon (Corg) degradation pathways in marine sediments is difficult to achieve experimentally due to the limited availability of field data. In the present study, a numerical modeling approach is used as an alternative to quantify the major metabolic pathways of Corg oxidation (Cox) and associated fluxes of redox-sensitive species fluxes along a global ocean hypsometry, using the seafloor depth (SFD) as the master variable. The SFD dependency of the model parameters and forcing functions is extracted from existing empirical relationships or from the NOAA World Ocean Atlas. Results are in general agreement with estimates from the literature showing that the relative contribution of aerobic respiration to Cox increases from 80% in deep-sea sediments. Sulfate reduction essentially follows an inversed SFD dependency, the other metabolic pathways (denitrification, Mn and Fe reduction) only adding minor contributions to the global-scale mineralization of Corg. The hypsometric analysis allows the establishment of relationships between the individual terminal electron acceptor (TEA) fluxes across the sediment-water interface and their respective contributions to the Corg decomposition process. On a global average, simulation results indicate that sulfate reduction is the dominant metabolic pathway and accounts for approximately 76% of the total Cox, which is higher than reported so far by other authors. The results also demonstrate the importance of bioirrigation for the assessment of global species fluxes. Especially at shallow SFD most of the TEAs enter the sediments via bioirrigation, which complicates the use of concentration profiles for the determination of total TEA fluxes by molecular diffusion. Furthermore, bioirrigation accounts for major losses of reduced species from the sediment to the water column prohibiting their reoxidation inside the sediment. As a result, the total carbon mineralization rate exceeds the total flux of oxygen into the sediment by a factor of 2 globally.

92 citations

Journal ArticleDOI
TL;DR: In this paper, the early diagenesis of the major carrier phases (Fe and Mn minerals), trace elements (As, Co, Cr, Hg, MeHg, Ni) and nutrients (RNO 3, NH þ 4, RPO 4) and their exchange at the sediment water/interface were studied in the Berre Lagoon, a Mediterranean lagoon in France, at one site under two contrasting oxygen-ation conditions (strictly anoxic and slightly oxic) and at an adjacent site with perennially welloxygen-ated water.

81 citations


Cites background from "Geochemistry of trace metals in a f..."

  • ...Among the trace elements studied, only Co demonstrates a clear link with the Mn cycle, as previously reported in other aquatic environments (Canavan et al., 2007, Stockdale et al., 2010)....

    [...]

Book ChapterDOI
01 Jan 2009
TL;DR: Tidal freshwater wetlands link terrestrial and estuarine habitats as mentioned in this paper, where the amount of freshwater flow from upstream watersheds is of sufficient volume to create a dynamic tidal zone in which there are tides but the water is almost completely fresh.
Abstract: Tidal freshwater wetlands link terrestrial and estuarine habitats. They occur in coastal systems around the world, primarily rivers, where the amount of freshwater flow from upstream watersheds is of sufficient volume to create a dynamic tidal zone in which there are tides but the water is almost completely fresh. Tidal freshwater wetlands are characterized by high biodiversity, high productivity, and high rates of decomposition. The animal community is characterized by species that occur in freshwater and estuarine and marine species that spend important life history stage in freshwater environments. Given their location near urban areas in coastal rivers, many tidal freshwater wetlands have been destroyed and the wetlands that remain are threatened by sea level rise, salt water intrusion, and invasive species. Effective conservation, restoration, and management of tidal freshwater wetlands will require vigilance and commitment by governmental and nongovernmental organizations.

70 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a calibrated chemical extraction scheme was developed for partitioning reactive Fe(III) minerals in the solid phase of marine sediments, and the following chemical extractants were used: ascorbate, oxalate, dithionite, and HC1 (0.5 M).

620 citations


"Geochemistry of trace metals in a f..." refers background or methods in this paper

  • ...The reactive pool extraction in the HuertaDiaz and Morse (1990) method (1 M HCl) is less specific, as it also mobilizes reactive Fe(II) phases (Kostka and Luther, 1994)....

    [...]

  • ...In coastal marine sediments and salt marsh soils, abundant sulfate and OM cause high rates of sulfide production, with pyrite (FeS2) being the most common endproduct (Huerta-Diaz and Morse, 1990; Kostka and Luther, 1994)....

    [...]

  • ...Additional extractions with citrate–dithionite bicarbonate (CDB, extraction solution analysis by ICP-OES; Slomp et al., 1996) and pH 7.5 ascorbate (Hyacinthe and Van Cappellen, 2004; Kostka and Luther, 1994) were performed on wet sediment to further characterize the reactive Fe(III) pool....

    [...]

Journal ArticleDOI
TL;DR: In this paper, it was shown that acid volatile sulfide (AVS) is not equivalent to FeS and solid FeS phases have rarely been identified in marine sediments.

561 citations


"Geochemistry of trace metals in a f..." refers background in this paper

  • ...It is important to note that AVS includes a range of sulfide containing compounds (Rickard and Morse, 2005)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a review examines the control of sulphate reduction and sulphur cycling in sediments of lakes with different trophic status and finds that sulphur reduction is generally low in acidic lakes because of low sulphate availability and reduced microbial activity.
Abstract: 1. The concentration of sulphate is low in lakes and sulphur cycling has often been neglected in studies of organic matter diagenesis in lake sediments. The cycling of sulphur is, however, both spatially and temporally dynamic and strongly influences many biogeochemical reactions in sediments, such as the binding of phosphorus. This review examines the control of sulphate reduction and sulphur cycling in sediments of lakes with different trophic status. 2. The factors that control the rate of sulphate reduction have not been identified with certainty in the various environments because many factors are involved, e.g. oxygen and sulphate concentrations, temperature and organic matter availability. 3. Sulphate reduction is less significant under oligotrophic conditions, where mineralization is dominated by oxic decomposition. The supply of organic matter may not be sufficient to support sulphate reduction in the anoxic parts of sediments and, also, sulphate availability may control the rate as the concentration is generally low in oligotrophic lakes. 4. There is a potential for significant sulphate reduction in eutrophic lakes, as both the availability of organic matter and sulphate concentration are often higher than in oligotrophic lakes. Sulphate is rapidly depleted with sediment depth, however, and methanogenesis is generally the most important process in overall carbon mineralization. Sulphate reduction is generally low in acidic lakes because of low sulphate availability and reduced microbial activity. 5. It is still unclear which of the forms of sulphur deposits are the most important and under which conditions burial occurs. Sulphur deposition is controlled by the rate of sulphate reduction and reoxidation. Reoxidation of sulphides occurs rapidly through several pathways, both under oxic and anoxic conditions. Only a few studies have been able to examine the importance of reoxidation, but it is hypothesized that most of the reoxidation takes place under anoxic conditions and that disproportionation is often involved. The presence of sulphide oxidizing bacteria, benthic fauna and rooted macrophytes may substantially enhance oxic reoxidation. Deposition of sulphur is generally higher in eutrophic than in oligotrophic lakes because of a number of factors: a higher rate of sulphate reduction, enhanced sedimentation of organic sulphur and less reoxidation as a result of reduced penetration of oxygen into the sediments, a lack of faunal activity and rooted macrophytes.

559 citations


"Geochemistry of trace metals in a f..." refers background in this paper

  • ...Sulfide is produced by bacterial sulfate reduction coupled to OM decomposition (Holmer and Storkholm, 2001)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors used the partial equilibrium approach to explain the simultaneous occurrence of Fe(III) and sulfate reduction, observed in several field studies, and showed that, depending on the stability of the iron oxides, simultaneous reduction of Fe (III), sulfate, and methanogenesis is thermodynamically possible under a wide range of sedimentary conditions.

449 citations


"Geochemistry of trace metals in a f..." refers background in this paper

  • ...Such overlap is observed in many sedimentary environments, and is attributed to the wide range in properties of natural Fe(III) mineral assemblages (Postma and Jakobsen, 1996; Roden, 2003) and sediment mixing processes (Thullner et al., 2005)....

    [...]

  • ...Such overlap is observed in many sedimentary environments, and is attributed to the wide range in properties of natural Fe(III) mineral assemblages (Postma and Jakobsen, 1996; Roden, 2003) and sediment mixing processes (Thullner et al....

    [...]

Journal ArticleDOI
TL;DR: In this paper, X-ray diffraction and electron microscopic analyses indicated that the Fe-rich material collected was predominantly ferrihydrite and poorly crystallized lepidocrocite, while the Mn-rich mixture was a mixture of poorly crystallised Mn oxyhydroxides.

408 citations


"Geochemistry of trace metals in a f..." refers background in this paper

  • ...The correlations of sediment Corg, Al, and Fe concentrations with grain size b63 μm (Table 1) indicate a close association of OM, metal oxides and clay minerals (Tessier et al., 1996)....

    [...]

Frequently Asked Questions (1)
Q1. What have the authors contributed in "Geochemistry of trace metals in a fresh water sediment: field results and diagenetic modeling" ?

Canavan et al. this paper measured trace metal concentrations in pore water and sediment of a coastal fresh water lake ( Haringvliet Lake, The Netherlands ).