scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Geodesic Active Contours

21 Feb 1997-International Journal of Computer Vision (Kluwer Academic Publishers)-Vol. 22, Iss: 1, pp 61-79
TL;DR: In this article, a geodesic approach based on active contours evolving in time according to intrinsic geometric measures of the image is presented. But this approach is not suitable for 3D object segmentation.
Abstract: A novel scheme for the detection of object boundaries is presented. The technique is based on active contours evolving in time according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both interior and exterior boundaries. The proposed approach is based on the relation between active contours and the computation of geodesics or minimal distance curves. The minimal distance curve lays in a Riemannian space whose metric is defined by the image content. This geodesic approach for object segmentation allows to connect classical “snakes” based on energy minimization and geometric active contours based on the theory of curve evolution. Previous models of geometric active contours are improved, allowing stable boundary detection when their gradients suffer from large variations, including gaps. Formal results concerning existence, uniqueness, stability, and correctness of the evolution are presented as well. The scheme was implemented using an efficient algorithm for curve evolution. Experimental results of applying the scheme to real images including objects with holes and medical data imagery demonstrate its power. The results may be extended to 3D object segmentation as well.
Citations
More filters
Journal ArticleDOI
TL;DR: A new model for active contours to detect objects in a given image, based on techniques of curve evolution, Mumford-Shah (1989) functional for segmentation and level sets is proposed, which can detect objects whose boundaries are not necessarily defined by the gradient.
Abstract: We propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, Mumford-Shah (1989) functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by the gradient. We minimize an energy which can be seen as a particular case of the minimal partition problem. In the level set formulation, the problem becomes a "mean-curvature flow"-like evolving the active contour, which will stop on the desired boundary. However, the stopping term does not depend on the gradient of the image, as in the classical active contour models, but is instead related to a particular segmentation of the image. We give a numerical algorithm using finite differences. Finally, we present various experimental results and in particular some examples for which the classical snakes methods based on the gradient are not applicable. Also, the initial curve can be anywhere in the image, and interior contours are automatically detected.

10,404 citations

Journal ArticleDOI
TL;DR: The methods and software engineering philosophy behind this new tool, ITK-SNAP, are described and the results of validation experiments performed in the context of an ongoing child autism neuroimaging study are provided, finding that SNAP is a highly reliable and efficient alternative to manual tracing.

6,669 citations

Journal ArticleDOI
TL;DR: This paper presents a new external force for active contours, which is computed as a diffusion of the gradient vectors of a gray-level or binary edge map derived from the image, and has a large capture range and is able to move snakes into boundary concavities.
Abstract: Snakes, or active contours, are used extensively in computer vision and image processing applications, particularly to locate object boundaries. Problems associated with initialization and poor convergence to boundary concavities, however, have limited their utility. This paper presents a new external force for active contours, largely solving both problems. This external force, which we call gradient vector flow (GVF), is computed as a diffusion of the gradient vectors of a gray-level or binary edge map derived from the image. It differs fundamentally from traditional snake external forces in that it cannot be written as the negative gradient of a potential function, and the corresponding snake is formulated directly from a force balance condition rather than a variational formulation. Using several two-dimensional (2-D) examples and one three-dimensional (3-D) example, we show that GVF has a large capture range and is able to move snakes into boundary concavities.

4,071 citations

Book
01 Jan 1998
TL;DR: This work states that all scale-spaces fulllling a few fairly natural axioms are governed by parabolic PDEs with the original image as initial condition, which means that, if one image is brighter than another, then this order is preserved during the entire scale-space evolution.
Abstract: Preface Through many centuries physics has been one of the most fruitful sources of inspiration for mathematics. As a consequence, mathematics has become an economic language providing a few basic principles which allow to explain a large variety of physical phenomena. Many of them are described in terms of partial diierential equations (PDEs). In recent years, however, mathematics also has been stimulated by other novel elds such as image processing. Goals like image segmentation, multiscale image representation, or image restoration cause a lot of challenging mathematical questions. Nevertheless, these problems frequently have been tackled with a pool of heuristical recipes. Since the treatment of digital images requires very much computing power, these methods had to be fairly simple. With the tremendous advances in computer technology in the last decade, it has become possible to apply more sophisticated techniques such as PDE-based methods which have been inspired by physical processes. Among these techniques, parabolic PDEs have found a lot of attention for smoothing and restoration purposes, see e.g. 113]. To restore images these equations frequently arise from gradient descent methods applied to variational problems. Image smoothing by parabolic PDEs is closely related to the scale-space concept where one embeds the original image into a family of subsequently simpler , more global representations of it. This idea plays a fundamental role for extracting semantically important information. The pioneering work of Alvarez, Guichard, Lions and Morel 11] has demonstrated that all scale-spaces fulllling a few fairly natural axioms are governed by parabolic PDEs with the original image as initial condition. Within this framework, two classes can be justiied in a rigorous way as scale-spaces: the linear diiusion equation with constant dif-fusivity and nonlinear so-called morphological PDEs. All these methods satisfy a monotony axiom as smoothing requirement which states that, if one image is brighter than another, then this order is preserved during the entire scale-space evolution. An interesting class of parabolic equations which pursue both scale-space and restoration intentions is given by nonlinear diiusion lters. Methods of this type have been proposed for the rst time by Perona and Malik in 1987 190]. In v vi PREFACE order to smooth the image and to simultaneously enhance semantically important features such as edges, they apply a diiusion process whose diiusivity is steered by local image properties. These lters are diicult to analyse mathematically , as they may act locally like a backward diiusion process. …

2,484 citations

Journal ArticleDOI
TL;DR: The level set method is couple to a wide variety of problems involving external physics, such as compressible and incompressible flow, Stefan problems, kinetic crystal growth, epitaxial growth of thin films, vortex-dominated flows, and extensions to multiphase motion.

2,174 citations

References
More filters
Journal ArticleDOI
TL;DR: This work uses snakes for interactive interpretation, in which user-imposed constraint forces guide the snake near features of interest, and uses scale-space continuation to enlarge the capture region surrounding a feature.
Abstract: A snake is an energy-minimizing spline guided by external constraint forces and influenced by image forces that pull it toward features such as lines and edges. Snakes are active contour models: they lock onto nearby edges, localizing them accurately. Scale-space continuation can be used to enlarge the capture region surrounding a feature. Snakes provide a unified account of a number of visual problems, including detection of edges, lines, and subjective contours; motion tracking; and stereo matching. We have used snakes successfully for interactive interpretation, in which user-imposed constraint forces guide the snake near features of interest.

18,095 citations

Journal ArticleDOI
TL;DR: The PSC algorithm as mentioned in this paper approximates the Hamilton-Jacobi equations with parabolic right-hand-sides by using techniques from the hyperbolic conservation laws, which can be used also for more general surface motion problems.

13,020 citations

Journal ArticleDOI
TL;DR: The notion of viscosity solutions of scalar fully nonlinear partial differential equations of second order provides a framework in which startling comparison and uniqueness theorems, existence theorem, and continuous dependence may now be proved by very efficient and striking arguments as discussed by the authors.
Abstract: The notion of viscosity solutions of scalar fully nonlinear partial differential equations of second order provides a framework in which startling comparison and uniqueness theorems, existence theorems, and theorems about continuous dependence may now be proved by very efficient and striking arguments. The range of important applications of these results is enormous. This article is a self-contained exposition of the basic theory of viscosity solutions

5,267 citations

Journal ArticleDOI
TL;DR: The authors present an efficient architecture to synthesize filters of arbitrary orientations from linear combinations of basis filters, allowing one to adaptively steer a filter to any orientation, and to determine analytically the filter output as a function of orientation.
Abstract: The authors present an efficient architecture to synthesize filters of arbitrary orientations from linear combinations of basis filters, allowing one to adaptively steer a filter to any orientation, and to determine analytically the filter output as a function of orientation. Steerable filters may be designed in quadrature pairs to allow adaptive control over phase as well as orientation. The authors show how to design and steer the filters and present examples of their use in the analysis of orientation and phase, angularly adaptive filtering, edge detection, and shape from shading. One can also build a self-similar steerable pyramid representation. The same concepts can be generalized to the design of 3-D steerable filters. >

3,365 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a shape model based on the Hamilton-Jacobi approach to shape modeling, which retains some of the attractive features of existing methods and overcomes some of their limitations.
Abstract: Shape modeling is an important constituent of computer vision as well as computer graphics research. Shape models aid the tasks of object representation and recognition. This paper presents a new approach to shape modeling which retains some of the attractive features of existing methods and overcomes some of their limitations. The authors' techniques can be applied to model arbitrarily complex shapes, which include shapes with significant protrusions, and to situations where no a priori assumption about the object's topology is made. A single instance of the authors' model, when presented with an image having more than one object of interest, has the ability to split freely to represent each object. This method is based on the ideas developed by Osher and Sethian (1988) to model propagating solid/liquid interfaces with curvature-dependent speeds. The interface (front) is a closed, nonintersecting, hypersurface flowing along its gradient field with constant speed or a speed that depends on the curvature. It is moved by solving a "Hamilton-Jacobi" type equation written for a function in which the interface is a particular level set. A speed term synthesized from the image is used to stop the interface in the vicinity of object boundaries. The resulting equation of motion is solved by employing entropy-satisfying upwind finite difference schemes. The authors present a variety of ways of computing the evolving front, including narrow bands, reinitializations, and different stopping criteria. The efficacy of the scheme is demonstrated with numerical experiments on some synthesized images and some low contrast medical images. >

3,039 citations