scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Geographical range, heat tolerance and invasion success in aquatic species

TL;DR: It is found that species introduced to freshwater systems have broader geographical ranges in comparison to native species, and introduced species are more heat tolerant than related native species collected from the same habitats.
Abstract: Species with broader geographical ranges are expected to be ecological generalists, while species with higher heat tolerances may be relatively competitive at more extreme and increasing temperatures. Thus, both traits are expected to relate to increased survival during transport to new regions of the globe, and once there, establishment and spread. Here, we explore these expectations using datasets of latitudinal range breadth and heat tolerance in freshwater and marine invertebrates and fishes. After accounting for the latitude and hemisphere of each species’ native range, we find that species introduced to freshwater systems have broader geographical ranges in comparison to native species. Moreover, introduced species are more heat tolerant than related native species collected from the same habitats. We further test for differences in range breadth and heat tolerance in relation to invasion success by comparing species that have established geographically restricted versus extensive introduced distributions. We find that geographical range size is positively related to invasion success in freshwater species only. However, heat tolerance is implicated as a trait correlated to widespread occurrence of introduced populations in both freshwater and marine systems. Our results emphasize the importance of formal risk assessments before moving heat tolerant species to novel locations.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: It is suggested that even moderate increases in ocean temperature and acidification can drive a homogenisation in behavioural competitiveness, eroding dominance differences among species that are linked to fitness-related traits in nature and hence important for their population persistence.

7 citations

Journal ArticleDOI
23 Aug 2022-NeoBiota
TL;DR: In this article , a comprehensive overview on invasive alien plant (IAP) species in Romania is provided, with a visualization of national patterns regarding plant species invasions, geographical origins and pathways of introductions.
Abstract: Biological invasions are one of the main drivers of modern human-induced species losses. Research on the distribution of alien species and their pathways of introduction is essential for understanding and tackling the invasion process. A comprehensive overview on invasive alien plant (IAP) species in Romania is lacking. With this paper, we aim to contribute to filling this gap and to provide a visualization of national patterns regarding plant species invasions, geographical origins and pathways of introductions. Based on plant species occurrence records in the published literature and herbaria we compiled a national database of 102 invasive and potentially invasive alien plant species. We georeferenced 42776 IAP species occurrences and performed an analysis of their spatial patterns. The spatial analyses revealed a biased sampling, with clear hotspots of increased sampling efforts around urban areas. We used chord diagrams to visualize the pathway of introduction and geographical origins of the IAP species, which revealed that species in Romania originate mainly in North and Central America, while the dominant pathway of plant introduction was horticulture. Our results provide an important baseline in drafting management and action plans, as invasive alien plant species represent a priority for the European Union through the Biodiversity Strategy for 2030, and a good starting point for various analyses as the database is further developed and regularly updated.

7 citations

Posted ContentDOI
11 Sep 2020-bioRxiv
TL;DR: It is suggested that thermal niches were static during the invasion process, and that general-purpose genotypes, rather than rapid evolution in the introduced range, may promote invasion.
Abstract: O_LIThe rise of globalization has spread organisms beyond their natural range, allowing further opportunity for introduced species to adapt to novel environments and potentially become aggressive invaders. Yet, the role of niche evolution in promoting the success of invasive species remains poorly understood. Here, we use thermal performance curves (TPCs) to test the following hypotheses about thermal adaptation during the invasion process. First, in response to strong selection from novel temperature regimes, populations in the invasive range should evolve distinct TPCs relative to native populations. Second, by exhibiting a broad TPC with high maximum performance, invasive species may overcome specialist-generalist tradeoffs, whereby tolerance across a wide range of temperatures comes at the cost of lower peak performance. Third, with sufficient time, standing genetic variation, and temperature-mediated selection, native and invasive populations may exhibit parallel adaptation to thermal gradients. C_LIO_LITo test these hypotheses, we built TPCs for 18 native (United States) and 13 invasive (United Kingdom) populations of the yellow monkeyflower, Mimulus guttatus. We grew clones of multiple genotypes per population across a range of temperatures in growth chambers. C_LIO_LIWe found that invasive populations have not evolved different thermal optima or thermal performance breadths, and there were similar specialist-generalist tradeoffs in both native and invasive populations. Consistent with the hypothesis that they are thermal generalists, native and invasive populations did not exhibit adaptive clines in thermal performance breadth with latitude or temperature seasonality. Thermal optimum increased with mean annual temperature in the native and invasive ranges. However, this relationship was primarily driven by populations in the native range, with weak adaptive differentiation of thermal optimum across mean annual temperature in the invasive range. Because thermal breadth of native and invasive populations did not differ and the invasive range exhibits a narrow range of thermal conditions compared to the native range, there may not have been strong selection for thermal specialization in the invasive range. C_LIO_LISynthesis: These findings suggest that broad thermal tolerance, rather than rapid adaptation in the novel range, may promote invasion. C_LI

6 citations

Journal ArticleDOI
TL;DR: The first draft whole-genome sequencing of a H. stipulacea individual from Greece, based on Illumina Sequencing technology, was reported in this paper, where a comparison of the Internal Transcribed Spacer (ITS) regions revealed a high divergence of the herein sequenced individual compared to Mediterranean populations sequenced two decades ago.
Abstract: The Mediterranean Sea is subject to pressures from biological invasion due to coastal anthropic activities and global warming, which potentially modify its biogeography. The Red Sea tropical seagrass Halophila stipulacea entered the Eastern Mediterranean over a century ago, and its occurrence is expanding towards the northwest. Here, we highlight the importance of genomics for deciphering the evolutionary and ecological procedures taking place during the invasion process of H. stipulacea and review the relatively sparse genetic information available for the species to date. We report the first draft whole-genome sequencing of a H. stipulacea individual from Greece, based on Illumina Sequencing technology. A comparison of the Internal Transcribed Spacer (ITS) regions revealed a high divergence of the herein sequenced individual compared to Mediterranean populations sequenced two decades ago, rendering further questions on the evolutionary processes taking place during H. stipulacea adaptation in the invaded Mediterranean Sea. Our work sets the baseline for a future analysis of the invasion genomic of the focal species.

6 citations

Journal ArticleDOI
27 Jan 2017
TL;DR: While the measured traits did influence survival of I. carnea, the importance of specific traits was contingent on the local environment, meaning that local trait-environment interactions need to be understood in order to predict invasion.
Abstract: Plant traits are critical for understanding invasion success of introduced species, yet attempts to identify universal traits that explain invasion success and impact have been unsuccessful because environmenttrait-fitness relationships are complex, potentially context dependent, and variation in traits is often unaccounted for. As introduced species encounter novel environments, their traits and trait variability can determine their ability to grow and reproduce, yet invasion biologists do not often have an understanding of how novel environments might shape traits. To uncover which combination of traits are most effective for predicting invasion success, we studied three different urban habitat types along the Nile Delta in Egypt invaded by the Pink Morning Glory, Ipomoea carnea Jacq. (Family: Convolvulaceae). Over two years, we measured ten plant traits at monthly intervals along an invasion gradient in each habitat. No single trait sufficiently explained survival probability and that traits linked to invasion success were better predicted by the characteristics of the invaded habitat. While the measured traits did influence survival of I. carnea, the importance of specific traits was contingent on the local environment, meaning that local trait-environment interactions need to be understood in order to predict invasion.

6 citations


Cites methods from "Geographical range, heat tolerance ..."

  • ...…growth rates of the invasive plant, and how they respond to environmental variation, we used density-independent matrix models (Engelen and Santos 2009, Griffith 2010) to evaluate the survivorship of I. carnea in three introduced habitats (Eid 2002, Jerde and Lewis 2007, Bates et al. 2013)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Given their current scale, biotic invasions have taken their place alongside human-driven atmospheric and oceanic alterations as major agents of global change and left unchecked, they will influence these other forces in profound but still unpredictable ways.
Abstract: Biotic invaders are species that establish a new range in which they proliferate, spread, and persist to the detriment of the environment. They are the most important ecological outcomes from the unprecedented alterations in the distribution of the earth's biota brought about largely through human transport and commerce. In a world without borders, few if any areas remain sheltered from these im- migrations. The fate of immigrants is decidedly mixed. Few survive the hazards of chronic and stochastic forces, and only a small fraction become naturalized. In turn, some naturalized species do become invasive. There are several potential reasons why some immigrant species prosper: some escape from the constraints of their native predators or parasites; others are aided by human-caused disturbance that disrupts native communities. Ironically, many biotic invasions are apparently facilitated by cultivation and husbandry, unintentional actions that foster immigrant populations until they are self-perpetuating and uncontrollable. Whatever the cause, biotic invaders can in many cases inflict enormous environmental damage: (1) Animal invaders can cause extinctions of vulnerable native species through predation, grazing, competition, and habitat alteration. (2) Plant invaders can completely alter the fire regime, nutrient cycling, hydrology, and energy budgets in a native ecosystem and can greatly diminish the abundance or survival of native species. (3) In agriculture, the principal pests of temperate crops are nonindigenous, and the combined expenses of pest control and crop losses constitute an onerous "tax" on food, fiber, and forage production. (4) The global cost of virulent plant and animal diseases caused by parasites transported to new ranges and presented with susceptible new hosts is currently incalculable. Identifying future invaders and taking effective steps to prevent their dispersal and establishment con- stitutes an enormous challenge to both conservation and international commerce. Detection and management when exclusion fails have proved daunting for varied reasons: (1) Efforts to identify general attributes of future invaders have often been inconclusive. (2) Predicting susceptible locales for future invasions seems even more problematic, given the enormous differences in the rates of arrival among potential invaders. (3) Eradication of an established invader is rare, and control efforts vary enormously in their efficacy. Successful control, however, depends more on commitment and continuing diligence than on the efficacy of specific tools themselves. (4) Control of biotic invasions is most effective when it employs a long-term, ecosystem- wide strategy rather than a tactical approach focused on battling individual invaders. (5) Prevention of invasions is much less costly than post-entry control. Revamping national and international quarantine laws by adopting a "guilty until proven innocent" approach would be a productive first step. Failure to address the issue of biotic invasions could effectively result in severe global consequences, including wholesale loss of agricultural, forestry, and fishery resources in some regions, disruption of the ecological processes that supply natural services on which human enterprise depends, and the creation of homogeneous, impoverished ecosystems composed of cosmopolitan species. Given their current scale, biotic invasions have taken their place alongside human-driven atmospheric and oceanic alterations as major agents of global change. Left unchecked, they will influence these other forces in profound but still unpredictable ways.

6,195 citations

Journal ArticleDOI
TL;DR: Active adaptive management and governance of resilience will be required to sustain desired ecosystem states and transform degraded ecosystems.
Abstract: ▪ Abstract We review the evidence of regime shifts in terrestrial and aquatic environments in relation to resilience of complex adaptive ecosystems and the functional roles of biological diversity in this context. The evidence reveals that the likelihood of regime shifts may increase when humans reduce resilience by such actions as removing response diversity, removing whole functional groups of species, or removing whole trophic levels; impacting on ecosystems via emissions of waste and pollutants and climate change; and altering the magnitude, frequency, and duration of disturbance regimes. The combined and often synergistic effects of those pressures can make ecosystems more vulnerable to changes that previously could be absorbed. As a consequence, ecosystems may suddenly shift from desired to less desired states in their capacity to generate ecosystem services. Active adaptive management and governance of resilience will be required to sustain desired ecosystem states and transform degraded ecosystems...

3,297 citations


"Geographical range, heat tolerance ..." refers background in this paper

  • ...Introduced species have been implicated in causing biodiversity loss [4], regime shifts [5] and extinctions [6], all of which can impact human resources and economic activity [7]....

    [...]

Journal ArticleDOI
TL;DR: Although restricted to few taxa, these studies reveal clear relationships between the characteristics of releases and the species involved, and the successful establishment and spread of invaders.
Abstract: Predicting which species are probable invaders has been a long-standing goal of ecologists, but only recently have quantitative methods been used to achieve such a goal. Although restricted to few taxa, these studies reveal clear relationships between the characteristics of releases and the species involved, and the successful establishment and spread of invaders. For example, the probability of bird establishment increases with the number of individuals released and the number of release events. Also, the probability of plant invasiveness increases if the species has a history of invasion and reproduces vegetatively. These promising quantitative approaches should be more widely applied to allow us to predict patterns of invading species more successfully.

2,698 citations

01 Jan 2009

2,607 citations


"Geographical range, heat tolerance ..." refers methods in this paper

  • ...See http://CRAN.R-project. org/package=MuMIn....

    [...]

  • ...The 80% confidence model set (table S3) was calculated with the package “MuMIn” [24] and the function model....

    [...]

  • ...Bartoń K. 2009 MuMIn: Multi-model inference....

    [...]

  • ...The 80% confidence model set (see electronic supplementary material, table S3) was calculated with the package ‘MuMIn’ [23] and the function model.avg....

    [...]

Journal ArticleDOI
31 Oct 2008-Science
TL;DR: Studies of physiological mechanisms are needed to predict climate effects on ecosystems at species and community levels and to help scientists understand the drivers of climate change.
Abstract: Studies of physiological mechanisms are needed to predict climate effects on ecosystems at species and community levels.

2,055 citations