scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Geographical range, heat tolerance and invasion success in aquatic species

TL;DR: It is found that species introduced to freshwater systems have broader geographical ranges in comparison to native species, and introduced species are more heat tolerant than related native species collected from the same habitats.
Abstract: Species with broader geographical ranges are expected to be ecological generalists, while species with higher heat tolerances may be relatively competitive at more extreme and increasing temperatures. Thus, both traits are expected to relate to increased survival during transport to new regions of the globe, and once there, establishment and spread. Here, we explore these expectations using datasets of latitudinal range breadth and heat tolerance in freshwater and marine invertebrates and fishes. After accounting for the latitude and hemisphere of each species’ native range, we find that species introduced to freshwater systems have broader geographical ranges in comparison to native species. Moreover, introduced species are more heat tolerant than related native species collected from the same habitats. We further test for differences in range breadth and heat tolerance in relation to invasion success by comparing species that have established geographically restricted versus extensive introduced distributions. We find that geographical range size is positively related to invasion success in freshwater species only. However, heat tolerance is implicated as a trait correlated to widespread occurrence of introduced populations in both freshwater and marine systems. Our results emphasize the importance of formal risk assessments before moving heat tolerant species to novel locations.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Under an eco-evolutionary perspective, the traits highlighted in this work may buffer selective pressures experienced by populations in different biotic and/or abiotic conditions, which may also favor the increasing of the geographical range by allowing the evolutionary lineage to remain similar even in disconnected and/ or striking different environments.
Abstract: The cichlid Mesonauta festivus is common and abundant among macrophyte stands along a large geographical range of the Amazonas and Parana-Paraguay basins, in South America. This broad geographical range highlights the species’ dispersion ability, which can be attributed to specific biological and behavioral traits. However, the dispersion ability does not account for the broad geographical range alone, as the species must be able to establish populations in a range of environments, which include marginal areas of large rivers with different water types, floodplain lakes, and small terra-firme streams. In this work we investigated the specie’s ecology, biological traits and behavior in order to understand what and how its traits may have allowed it to attain such broad geographical range and aid in establishing local populations. Regarding its dispersion ability we stress the capability of swimming in the pelagic region, which is remarkable for this species and uncommon among Neotropical cichlids. Its vagility is high even when juveniles are under parental care. Regarding population establishment, the high environmental tolerance stands out, allowing the species to live under strikingly different abiotic conditions. In addition, the small size of first sexual maturation and its capability of spawning along the whole hydrologic cycle (apparently not associated to a specific environmental cue) may also facilitate the establishment of populations into new environments. Moreover, the behavior of mimicking dead leaves, which is mainly performed by juveniles, may lessen predation pressures. Under an eco-evolutionary perspective, the traits highlighted in this work may buffer selective pressures experienced by populations in different biotic and/or abiotic conditions, which may also favor the increasing of the geographical range by allowing the evolutionary lineage to remain similar even in disconnected and/or striking different environments.

19 citations


Cites background from "Geographical range, heat tolerance ..."

  • ...Invasive species commonly have broad ranges in their native regions, are typically ecological generalists (Bates et al. 2013) and thrive in human-altered environments (Moyle and Marchetti 2006)....

    [...]

Journal ArticleDOI
TL;DR: The authors examined the response of the phytoplankton community to long-term ocean warming using the Community Temperature Index (CTI), an index of the preferred temperature of a community.
Abstract: Understanding impacts of global warming on phytoplankton–the foundation of marine ecosystems–is critical to predicting changes in future biodiversity, ocean productivity, and ultimately fisheries production. Using phytoplankton community abundance and environmental data that span ∼90 years (1931–2019) from a long-term Pacific Ocean coastal station off Sydney, Australia, we examined the response of the phytoplankton community to long-term ocean warming using the Community Temperature Index (CTI), an index of the preferred temperature of a community. With warming of ∼1.8°C at the site since 1931, we found a significant increase in the CTI from 1931–1932 to 2009–2019, suggesting that the relative proportion of warm-water to cold-water species has increased. The CTI also showed a clear seasonal cycle, with highest values at the end of austral summer (February/March) and lowest at the end of winter (August/September), a pattern well supported by other studies at this location. The shift in CTI was a consequence of the decline in the relative abundance of the cool-affinity (optimal temperature = 18.7°C), chain-forming diatom Asterionellopsis glacialis (40% in 1931–1932 to 13% in 2009 onward), and a substantial increase in the warm-affinity (21.5°C), also chain-forming diatom Leptocylindrus danicus (20% in 1931–1932 to 57% in 2009 onward). L. danicus reproduces rapidly, forms resting spores under nutrient depletion, and displays a wide thermal range. Species such as L. danicus may provide a glimpse of the functional traits necessary to be a “winner” under climate change.

18 citations


Cites methods from "Geographical range, heat tolerance ..."

  • ...The CTI has been used extensively to assess the preferred temperature of communities of microbes, butterflies, fish and benthic invertebrates (Devictor et al., 2008; Bates et al., 2013; Cheung et al., 2013; Zografou et al., 2014; Stuart-Smith et al., 2015), although it has never been used for phytoplankton....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors applied a trait-based sensitivity assessment for the key marine species in the southern Benguela system to estimate their potential relative sensitivity to the impacts of climate change.
Abstract: Climate change is altering many environmental parameters of coastal waters and open oceans, leading to substantial present-day and projected changes in the distribution, abundance and phenology of marine species. Attempts to assess how each species might respond to climate change can be data-, resource- and time-intensive. Moreover, in many regions of the world, including South Africa, species may be of vital socioeconomic or ecological importance though critical gaps may exist in our basic biological or ecological knowledge of the species. Here, we adapt and apply a trait-based sensitivity assessment for the key marine species in the southern Benguela system to estimate their potential relative sensitivity to the impacts of climate change. For our analysis, 40 priority species were selected based on their socioeconomic, ecological and/or recreational importance in the system. An extensive literature review and consultation with experts was undertaken concerning each species to gather information on their life history, habitat use and potential stressors. Fourteen attributes were used to estimate the selected species’ sensitivity and capacity to respond to climate change. A score ranging from low to high sensitivity was given for each attribute, based on the available information. Similarly, a score was assigned to the type and quality of information used to score each particular attribute, allowing an assessment of data-quality inputs for each species. The analysis identified the white steenbras Lithognathus lithognathus, soupfin shark Galeorhinus galeus, St Joseph Callorhinchus capensis and abalone Haliotis midae as potentially the most sensitive species to climate-change impacts in the southern Benguela system. There were data gaps for larval dispersal and settlement and metamorphosis cues for most of the evaluated species. Our results can be used by resource managers to determine the type of monitoring, intervention and planning that may be required to best respond to climate change, given the limited resources and significant knowledge gaps in many cases.

17 citations


Cites background from "Geographical range, heat tolerance ..."

  • ...Like many regions of the world (e.g. Sundby and Nakken 2008; Bates et al. 2013; Poloczanska et al. 2016; Pecl et al. 2017), these changes in environmental drivers have resulted in distributional shifts for many species....

    [...]

Journal ArticleDOI
TL;DR: Under the impacts of independent extreme climate change or hydropower development, non-native fishes showed greater habitat gain in total, while native fishes shifted their distribution into tributaries and higher elevations, and impacts were stronger in combined scenarios.

17 citations

Journal ArticleDOI
TL;DR: The authors' data suggest an increase in macrofaunal taxa type with increasing current transport northward into the Pacific Arctic region that could have a strong influence in restructuring the benthic ecosystem in this region in the future.
Abstract: There is growing evidence that increased Pacific water transport into the Arctic affects the marine ecosystem. One of the theoretical predictions for a future Arctic characterized by such environmental change is that subarctic taxa will expand northward and invade the native Arctic ecosystem. This study focuses on variation in macrofaunal community composition and the influence of changing physical drivers at known benthic hotspots in the Pacific Arctic. The average number of macrofaunal family-level taxa has increased significantly south of St. Lawrence Island and in the Chirikov Basin, whereas the number of macrofaunal taxa in the southeastern Chukchi Sea showed no significant trend over the 2000–2013 time period. However, the Shannon–Weaver diversity index, based on abundance, did not mirror these regional changes in the number of macrofaunal taxa, indicating that the abundance of newly present taxa was negligible compared to the entire abundance already present. We also investigated temporal variations in meridional sea level gradient and local winds, which contribute 2/3 and 1/3 of the variation in northward volume transport at Bering Strait, respectively. There were significant increasing trends in the meridional sea level gradient and local winds, suggesting the increased northward seawater volume transports over the benthic hotspots could contribute to the expansion of subarctic taxa into these northern Arctic regions. Our data suggest an increase in macrofaunal taxa type with increasing current transport northward into the Pacific Arctic region that could have a strong influence in restructuring the benthic ecosystem in this region in the future.

15 citations

References
More filters
Journal ArticleDOI
TL;DR: Given their current scale, biotic invasions have taken their place alongside human-driven atmospheric and oceanic alterations as major agents of global change and left unchecked, they will influence these other forces in profound but still unpredictable ways.
Abstract: Biotic invaders are species that establish a new range in which they proliferate, spread, and persist to the detriment of the environment. They are the most important ecological outcomes from the unprecedented alterations in the distribution of the earth's biota brought about largely through human transport and commerce. In a world without borders, few if any areas remain sheltered from these im- migrations. The fate of immigrants is decidedly mixed. Few survive the hazards of chronic and stochastic forces, and only a small fraction become naturalized. In turn, some naturalized species do become invasive. There are several potential reasons why some immigrant species prosper: some escape from the constraints of their native predators or parasites; others are aided by human-caused disturbance that disrupts native communities. Ironically, many biotic invasions are apparently facilitated by cultivation and husbandry, unintentional actions that foster immigrant populations until they are self-perpetuating and uncontrollable. Whatever the cause, biotic invaders can in many cases inflict enormous environmental damage: (1) Animal invaders can cause extinctions of vulnerable native species through predation, grazing, competition, and habitat alteration. (2) Plant invaders can completely alter the fire regime, nutrient cycling, hydrology, and energy budgets in a native ecosystem and can greatly diminish the abundance or survival of native species. (3) In agriculture, the principal pests of temperate crops are nonindigenous, and the combined expenses of pest control and crop losses constitute an onerous "tax" on food, fiber, and forage production. (4) The global cost of virulent plant and animal diseases caused by parasites transported to new ranges and presented with susceptible new hosts is currently incalculable. Identifying future invaders and taking effective steps to prevent their dispersal and establishment con- stitutes an enormous challenge to both conservation and international commerce. Detection and management when exclusion fails have proved daunting for varied reasons: (1) Efforts to identify general attributes of future invaders have often been inconclusive. (2) Predicting susceptible locales for future invasions seems even more problematic, given the enormous differences in the rates of arrival among potential invaders. (3) Eradication of an established invader is rare, and control efforts vary enormously in their efficacy. Successful control, however, depends more on commitment and continuing diligence than on the efficacy of specific tools themselves. (4) Control of biotic invasions is most effective when it employs a long-term, ecosystem- wide strategy rather than a tactical approach focused on battling individual invaders. (5) Prevention of invasions is much less costly than post-entry control. Revamping national and international quarantine laws by adopting a "guilty until proven innocent" approach would be a productive first step. Failure to address the issue of biotic invasions could effectively result in severe global consequences, including wholesale loss of agricultural, forestry, and fishery resources in some regions, disruption of the ecological processes that supply natural services on which human enterprise depends, and the creation of homogeneous, impoverished ecosystems composed of cosmopolitan species. Given their current scale, biotic invasions have taken their place alongside human-driven atmospheric and oceanic alterations as major agents of global change. Left unchecked, they will influence these other forces in profound but still unpredictable ways.

6,195 citations

Journal ArticleDOI
TL;DR: Active adaptive management and governance of resilience will be required to sustain desired ecosystem states and transform degraded ecosystems.
Abstract: ▪ Abstract We review the evidence of regime shifts in terrestrial and aquatic environments in relation to resilience of complex adaptive ecosystems and the functional roles of biological diversity in this context. The evidence reveals that the likelihood of regime shifts may increase when humans reduce resilience by such actions as removing response diversity, removing whole functional groups of species, or removing whole trophic levels; impacting on ecosystems via emissions of waste and pollutants and climate change; and altering the magnitude, frequency, and duration of disturbance regimes. The combined and often synergistic effects of those pressures can make ecosystems more vulnerable to changes that previously could be absorbed. As a consequence, ecosystems may suddenly shift from desired to less desired states in their capacity to generate ecosystem services. Active adaptive management and governance of resilience will be required to sustain desired ecosystem states and transform degraded ecosystems...

3,297 citations


"Geographical range, heat tolerance ..." refers background in this paper

  • ...Introduced species have been implicated in causing biodiversity loss [4], regime shifts [5] and extinctions [6], all of which can impact human resources and economic activity [7]....

    [...]

Journal ArticleDOI
TL;DR: Although restricted to few taxa, these studies reveal clear relationships between the characteristics of releases and the species involved, and the successful establishment and spread of invaders.
Abstract: Predicting which species are probable invaders has been a long-standing goal of ecologists, but only recently have quantitative methods been used to achieve such a goal. Although restricted to few taxa, these studies reveal clear relationships between the characteristics of releases and the species involved, and the successful establishment and spread of invaders. For example, the probability of bird establishment increases with the number of individuals released and the number of release events. Also, the probability of plant invasiveness increases if the species has a history of invasion and reproduces vegetatively. These promising quantitative approaches should be more widely applied to allow us to predict patterns of invading species more successfully.

2,698 citations

01 Jan 2009

2,607 citations


"Geographical range, heat tolerance ..." refers methods in this paper

  • ...See http://CRAN.R-project. org/package=MuMIn....

    [...]

  • ...The 80% confidence model set (table S3) was calculated with the package “MuMIn” [24] and the function model....

    [...]

  • ...Bartoń K. 2009 MuMIn: Multi-model inference....

    [...]

  • ...The 80% confidence model set (see electronic supplementary material, table S3) was calculated with the package ‘MuMIn’ [23] and the function model.avg....

    [...]

Journal ArticleDOI
31 Oct 2008-Science
TL;DR: Studies of physiological mechanisms are needed to predict climate effects on ecosystems at species and community levels and to help scientists understand the drivers of climate change.
Abstract: Studies of physiological mechanisms are needed to predict climate effects on ecosystems at species and community levels.

2,055 citations