scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Geographical range, heat tolerance and invasion success in aquatic species

TL;DR: It is found that species introduced to freshwater systems have broader geographical ranges in comparison to native species, and introduced species are more heat tolerant than related native species collected from the same habitats.
Abstract: Species with broader geographical ranges are expected to be ecological generalists, while species with higher heat tolerances may be relatively competitive at more extreme and increasing temperatures. Thus, both traits are expected to relate to increased survival during transport to new regions of the globe, and once there, establishment and spread. Here, we explore these expectations using datasets of latitudinal range breadth and heat tolerance in freshwater and marine invertebrates and fishes. After accounting for the latitude and hemisphere of each species’ native range, we find that species introduced to freshwater systems have broader geographical ranges in comparison to native species. Moreover, introduced species are more heat tolerant than related native species collected from the same habitats. We further test for differences in range breadth and heat tolerance in relation to invasion success by comparing species that have established geographically restricted versus extensive introduced distributions. We find that geographical range size is positively related to invasion success in freshwater species only. However, heat tolerance is implicated as a trait correlated to widespread occurrence of introduced populations in both freshwater and marine systems. Our results emphasize the importance of formal risk assessments before moving heat tolerant species to novel locations.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review evidence for the responses of marine life to recent climate change across ocean regions, from tropical seas to polar oceans, and find that general trends in species responses are consistent with expectations from climate change, including poleward and deeper distributional shifts, advances in spring phenology, declines in calcification and increases in the abundance of warm water species.
Abstract: Climate change is driving changes in the physical and chemical properties of the ocean that have consequences for marine ecosystems. Here, we review evidence for the responses of marine life to recent climate change across ocean regions, from tropical seas to polar oceans. We consider observed changes in calcification rates, demography, abundance, distribution and phenology of marine species. We draw on a database of observed climate change impacts on marine species, supplemented with evidence in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We discuss factors that limit or facilitate species’ responses, such as fishing pressure, the availability of prey, habitat, light and other resources, and dispersal by ocean currents. We find that general trends in species responses are consistent with expectations from climate change, including poleward and deeper distributional shifts, advances in spring phenology, declines in calcification and increases in the abundance of warm-water species. The volume and type of evidence of species responses to climate change is variable across ocean regions and taxonomic groups, with much evidence derived from the heavily-studied north Atlantic Ocean. Most investigations of marine biological impacts of climate change are of the impacts of changing temperature, with few observations of effects of changing oxygen, wave climate, precipitation (coastal waters) or ocean acidification. Observations of species responses that have been linked to anthropogenic climate change are widespread, but are still lacking for some taxonomic groups (e.g., phytoplankton, benthic invertebrates, marine mammals).

552 citations


Cites background from "Geographical range, heat tolerance ..."

  • ...The role of climate change in driving distribution shifts in marine biodiversity is currently garnering considerable attention (e.g., Bates et al., 2013; Poloczanska et al., 2013; Lenoir and Svenning, 2014) given the potential ramifications for fisheries, marine management, conservation, and policy…...

    [...]

Journal ArticleDOI
TL;DR: Impacts of AIS, factors limiting their dispersal, and the role that humans play in transporting AIS are described, including those that pave the way for invasions by other species (“invasional meltdown”).
Abstract: Humans have effectively transported thousands of species around the globe and, with accelerated trade; the rate of introductions has increased over time. Aquatic ecosystems seem at particular risk from invasive species because of threats to biodiversity and human needs for water resources. Here, we review some known aspects of aquatic invasive species (AIS) and explore several new questions. We describe impacts of AIS, factors limiting their dispersal, and the role that humans play in transporting AIS. We also review the characteristics of species that should be the greatest threat for future invasions, including those that pave the way for invasions by other species (“invasional meltdown”). Susceptible aquatic communities, such as reservoirs, may serve as stepping stones for invasions of new landscapes. Some microbes disperse long distance, infect new hosts and grow in the external aquatic medium, a process that has consequences for human health. We also discuss the interaction between species invasions and other human impacts (climate change, landscape conversion), as well as the possible connection of invasions with regime shifts in lakes. Since many invaders become permanent features of the environment, we discuss how humans live with invasive species, and conclude with questions for future research.

339 citations


Cites background from "Geographical range, heat tolerance ..."

  • ...Furthermore, species with greater heat tolerance tend to also be over-represented in the invaders (Bates et al., 2013), a trend that has important implications for interactions between invasive species and climate change (Interaction with other processes section below)....

    [...]

  • ...Reservoirs create conditions more suitable for the invasive and more heat-tolerant species (Bates et al., 2013), as well as fauna tolerant of degraded ecosystems (Karatayev et al., 2009; Früh et al., 2012b)....

    [...]

  • ...Since many non-native species are tolerant to a wide range of environmental conditions (Kolar & Lodge, 2002; Bates et al., 2013; Sorte et al., 2013), we expect changing climate should facilitate the establishment of non-native species....

    [...]

  • ...For freshwater and marine invertebrates and fish, species with greater geographic range tend to be over-represented among invasive species, relative to those not invading (Kolar & Lodge, 2002; Bates et al., 2013)....

    [...]

Journal ArticleDOI
TL;DR: This work focuses on warming-related range shifts in marine systems to describe extensions and contractions as stages, and evaluates the utility of trait-based risk (invasion) and vulnerability (extinction) frameworks for application in a range shift context and finds inadequacies.
Abstract: Climate change is transforming the structure of biological communities through the geographic extension and contraction of species’ ranges. Range edges are naturally dynamic, and shifts in the location of range edges occur at different rates and are driven by different mechanisms. This leads to challenges when seeking to generalize responses among taxa and across systems. We focus on warming-related range shifts in marine systems to describe extensions and contractions as stages. Range extensions occur as a sequence of (1) arrival, (2) population increase, and (3) persistence. By contrast, range contractions occur progressively as (1) performance decline, (2) population decrease and (3) local extinction. This stage-based framework can be broadly applied to geographic shifts in any species, life-history stage, or population subset. Ideally the probability of transitioning through progressive range shift stages could be estimated from empirical understanding of the various factors influencing range shift rates. Nevertheless, abundance and occupancy data at the spatial resolution required to quantify range shifts are often unavailable and we suggest the pragmatic solution of considering observations of range shifts within a confidence framework incorporating the type, amount and quality of data. We use case studies to illustrate how diverse evidence sources can be used to stage range extensions and contractions and assign confidence that an observed range shift stage has been reached. We then evaluate the utility of trait-based risk (invasion) and vulnerability (extinction) frameworks for application in a range shift context and find inadequacies, indicating an important area for development. We further consider factors that influence rates of extension and contraction of range edges in marine habitats. Finally, we suggest approaches required to increase our capacity to observe and predict geographic range shifts under climate change.

211 citations


Cites background from "Geographical range, heat tolerance ..."

  • ...…physiological tolerances, phenotypic plasticity, the ability to overcome dispersal barriers and ecological generalism are expected pre-requisites for colonization and spread into new areas (Angert et al., 2011; Keith et al., 2011; Weir and Salice, 2011; Bates et al., 2013; Knutsen et al., 2013)....

    [...]

Journal ArticleDOI
TL;DR: An integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, is proposed to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming.
Abstract: Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing temperature helps providing more accurate predictions on species vulnerability to warming.

148 citations


Cites background from "Geographical range, heat tolerance ..."

  • ...This combination of traits possibly explains the recent geographical expansion of this species (Bates et al., 2013), and may make it particularly resilient to future warming scenarios (IPCC, 2014)....

    [...]

  • ...Palaemon macrodactylus seems, therefore, to have evolved a remarkably high metabolic control, which possibly explains its recent geographical expansion (Bates et al., 2013), and may make it especially resilient to future warming scenarios....

    [...]

  • ...…under future glo- bal change scenarios, we predict that in the English Channel area P. montagui may suffer a reduction in © 2014 John Wiley & Sons Ltd, Global Change Biology, 21, 181–194 presence and abundance, while P. macrodactylus may experience a further expansion (e.g., Bates et al., 2013)....

    [...]

  • ...Palaemon macrodactylus seems, therefore, to have evolved a remarkably high metabolic control, which possibly explains its recent geographical expansion (Bates et al., 2013), and may make it especially resilient to future warming scenarios....

    [...]

  • ...This combi- nation of traits possibly explains the recent geographical expansion of this species (Bates et al., 2013), and may make it particularly resilient to future warming scenarios (IPCC, 2014)....

    [...]

Journal ArticleDOI
TL;DR: The results provide novel insight into the well‐studied system of clinal differentiation in D. melanogaster and provide a context for future studies seeking to identify loci contributing to local adaptation in a wide variety of organisms, including other invasive species as well as temperate endemics.
Abstract: Populations arrayed along broad latitudinal gradients often show patterns of clinal variation in phenotype and genotype. Such population differentiation can be generated and maintained by both historical demographic events and local adaptation. These evolutionary forces are not mutually exclusive and can in some cases produce nearly identical patterns of genetic differentiation among populations. Here, we investigate the evolutionary forces that generated and maintain clinal variation genome-wide among populations of Drosophila melanogaster sampled in North America and Australia. We contrast patterns of clinal variation in these continents with patterns of differentiation among ancestral European and African populations. Using established and novel methods we derive here, we show that recently derived North America and Australia populations were likely founded by both European and African lineages and that this hybridization event likely contributed to genome-wide patterns of parallel clinal variation between continents. The pervasive effects of admixture mean that differentiation at only several hundred loci can be attributed to the operation of spatially varying selection using an FST outlier approach. Our results provide novel insight into the well-studied system of clinal differentiation in D. melanogaster and provide a context for future studies seeking to identify loci contributing to local adaptation in a wide variety of organisms, including other invasive species as well as temperate endemics.

147 citations


Cites background from "Geographical range, heat tolerance ..."

  • ...If invasive species are widely distributed in their native range (Bates et al. 2013), this raises the pos-...

    [...]

  • ...If invasive species are widely distributed in their native range (Bates et al. 2013), this raises the possibility that successful invasions may often result from admixture of populations that are already differentially adapted to selection pressures that vary along broad spatial gradients in the…...

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Invasive non-indigenous plant species (NIPS) threaten native diversity, alter ecosystem processes, and may interact with other components of global environmental change as discussed by the authors, and it is suggested that both research and management programs may benefit from employing multiscale and stage approaches to studying and controlling invasion.
Abstract: Invasive nonindigenous plant species (NIPS) threaten native diversity, alter ecosystem processes, and may interact with other components of global environmental change. Here, a general framework is outlined that attempts to connect patterns of plant invasion to processes underlying these patterns at four well-established spatio-temporal stages of the invasion process: transport, colonization, establishment, and landscape spread. At each stage we organize findings and ideas about the filters that limit NIPS success and the interaction of these filters with historical aspects of introduction events, NIPS traits, and ecosystem properties. While it remains difficult to draw conclusions about the risk of invasion across ecosystems, to delineate universal 'invader traits', or to predict large-scale extinctions following invasions, this review highlights the growing body of research that suggests that the success of invasive NIPS is controlled by a series of key processes or filters. These filters are common to all invasion events, and will interact throughout the stages of plant invasion, although the relative importance of a filter may be stage, species or location specific. It is suggested that both research and management programs may benefit from employing multiscale and stage approaches to studying and controlling invasion. We further use the framework to briefly examine potential interactions between climate change and filters that limit NIPS invasion.

825 citations

Journal ArticleDOI
TL;DR: Comparing the long-term record of weekly sessile marine invertebrate recruitment with interannual variation in water temperature suggests that the greatest effects of climate change on biotic communities may be due to changing maximum and minimum temperatures rather than annual means.
Abstract: The spread of exotic species and climate change are among the most serious global environmental threats. Each independently causes considerable ecological damage, yet few data are available to assess whether changing climate might facilitate invasions by favoring introduced over native species. Here, we compare our long-term record of weekly sessile marine invertebrate recruitment with interannual variation in water temperature to assess the likely effect of climate change on the success and spread of introduced species. For the three most abundant introduced species of ascidian (sea squirt), the timing of the initiation of recruitment was strongly negatively correlated with winter water temperature, indicating that invaders arrived earlier in the season in years with warmer winters. Total recruitment of introduced species during the following summer also was positively correlated with winter water temperature. In contrast, the magnitude of native ascidian recruitment was negatively correlated with winter temperature (more recruitment in colder years) and the timing of native recruitment was unaffected. In manipulative laboratory experiments, two introduced compound ascidians grew faster than a native species, but only at temperatures near the maximum observed in summer. These data suggest that the greatest effects of climate change on biotic communities may be due to changing maximum and minimum temperatures rather than annual means. By giving introduced species an earlier start, and increasing the magnitude of their growth and recruitment relative to natives, global warming may facilitate a shift to dominance by nonnative species, accelerating the homogenization of the global biota.

783 citations

01 Jan 2007
TL;DR: A general framework is outlined that attempts to connect patterns of plant invasion to processes underlying these patterns at four well-established spatio-temporal stages of the invasion process: transport, colonization, establishment, and landscape spread.
Abstract: Summary Invasive nonindigenous plant species (NIPS) threaten native diversity, alter ecosystem processes, and may interact with other components of global environmental change. Here, a general framework is outlined that attempts to connect patterns of plant invasion to processes underlying these patterns at four well-established spatio- temporal stages of the invasion process: transport, colonization, establishment, and landscape spread. At each stage we organize findings and ideas about the filters that limit NIPS success and the interaction of these filters with historical aspects of introduction events, NIPS traits, and ecosystem properties. While it remains difficult to draw conclusions about the risk of invasion across ecosystems, to delineate universal 'invader traits', or to predict large-scale extinctions following invasions, this review highlights the growing body of research that suggests that the success of invasive NIPS is controlled by a series of key processes or filters. These filters are common to all invasion events, and will interact throughout the stages of plant invasion, although the relative importance of a filter may be stage, species or location specific. It is suggested that both research and management programs may benefit from employing multiscale and stage approaches to studying and controlling invasion. We further use the framework to briefly examine potential interactions between climate change and filters that limit NIPS invasion.

739 citations

Journal ArticleDOI
TL;DR: Evidence is presented for several mechanisms that exemplify how exotic species can facilitate native species and predict that facilitative impacts on native species will be most likely when invasive species provide a limiting resource, increase habitat complexity, functionally replace a native species, or ameliorate predation or competition.
Abstract: Although the predatory and competitive impacts of biological invasions are well documented, facilitation of native species by non-indigenous species is frequently overlooked. A search through recent ecological literature found that facilitative interactions between invasive and native species occur in a wide range of habitats, can have cascading effects across trophic levels, can re-structure communities, and can lead to evolutionary changes. These are critical findings that, until now, have been mostly absent from analyses of ecological impacts of biological invasions. Here I present evidence for several mechanisms that exemplify how exotic species can facilitate native species. These mechanisms include habitat modification, trophic subsidy, pollination, competitive release, and predatory release. Habitat modification is the most frequently documented mechanism, reflecting the drastic changes generated by the invasion of functionally novel habitat engineers. Further, I predict that facilitative impacts on native species will be most likely when invasive species provide a limiting resource, increase habitat complexity, functionally replace a native species, or ameliorate predation or competition. Finally, three types of facilitation (novel, substitutive, and indirect) define why exotic species can lead to facilitation of native species. It is evident that understanding biological invasions at the community and ecosystem levels will be more accurate if we integrate facilitative interactions into future ecological research. Since facilitative impacts of biological invasions can occur with native endangered species, and can have wide-ranging impacts, these results also have important implications for management, eradication, and restoration.

568 citations

Journal ArticleDOI
TL;DR: The dispersal of zebra mussels by trailered boats, particularly by “piggybacking” on macrophytes entangled on the trailers, must be controlled in order to limit further range expansion of the zebraMussel within North America.
Abstract: Predictions of the geographic spread of introduced species are often limited by a lack of data on their mechanisms of dispersal. We interviewed boaters and inspected boating equipment at public boat launches on Lake St. Clair (Michigan, USA) to assess the potential for the zebra mussel, an invasive bivalve, to be dispersed overland to inland waters by transient recreational boating activities. Several mechanisms associated with recreational boating were found to be capable of transporting either larval or adult life stages. Larvae were found in all forms of water carried by boats (i.e., in live wells, bilges, bait buckets, and engines) but were estimated to be 40–100× more abundant in live wells than other locations. Dilution in receiving waters should, however, greatly reduce the risk of establishing new populations by the introduction of larvae. Contrary to common belief, mussel dispersal from these boat launches did not occur by direct attachment to transient boats. Rather, adult and juvenile mussels were transported primarily on macrophytes entangled on boat trailers and, less frequently, on anchors (5.3% and 0.9% of departing boats, respectively). Combining these data with estimates of survival in air and reported boater destinations, we predict that a maximum of 0.12% of the trailered boats departing these access sites delivered live adult mussels to inland waters solely by transport on entangled macrophytes. While this is a small probability, high levels of vector activity resulted in a prediction of a total of 170 dispersal events to inland waters within the summer season from the primary boat launch studied. Many other potential vectors remain to be assessed, but the dispersal of zebra mussels by trailered boats, particularly by “piggybacking” on macrophytes entangled on the trailers, must be controlled in order to limit further range expansion of the zebra mussel within North America.

401 citations