scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Geometric SMOTE a geometrically enhanced drop-in replacement for SMOTE

01 Oct 2019-Information Sciences (Elsevier)-Vol. 501, pp 118-135
TL;DR: Geometric SMOTE (G-SMOTE) is proposed as a enhancement of the SMOTE data generation mechanism and empirical results show a significant improvement in the quality of the generated data when G- SMOTE is used as an oversampling algorithm.
About: This article is published in Information Sciences.The article was published on 2019-10-01. It has received 102 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: An improved SMOTE-based method, namely Range-Controlled SMOTE (RCSMOTE), which targets all three problems simultaneously and overcomes the above-mentioned problems of SMOTE.

68 citations

Journal ArticleDOI
TL;DR: To explain the success of the algorithm, a mathematical framework is constructed to prove that LoRAS oversampling technique provides a better estimate for the mean of the underlying local data distribution of the minority class data space.
Abstract: The Synthetic Minority Oversampling TEchnique (SMOTE) is widely-used for the analysis of imbalanced datasets. It is known that SMOTE frequently over-generalizes the minority class, leading to misclassifications for the majority class, and effecting the overall balance of the model. In this article, we present an approach that overcomes this limitation of SMOTE, employing Localized Random Affine Shadowsampling (LoRAS) to oversample from an approximated data manifold of the minority class. We benchmarked our algorithm with 14 publicly available imbalanced datasets using three different Machine Learning (ML) algorithms and compared the performance of LoRAS, SMOTE and several SMOTE extensions that share the concept of using convex combinations of minority class data points for oversampling with LoRAS. We observed that LoRAS, on average generates better ML models in terms of F1-Score and Balanced accuracy. Another key observation is that while most of the extensions of SMOTE we have tested, improve the F1-Score with respect to SMOTE on an average, they compromise on the Balanced accuracy of a classification model. LoRAS on the contrary, improves both F1 Score and the Balanced accuracy thus produces better classification models. Moreover, to explain the success of the algorithm, we have constructed a mathematical framework to prove that LoRAS oversampling technique provides a better estimate for the mean of the underlying local data distribution of the minority class data space.

67 citations

Journal ArticleDOI
TL;DR: In RSMOTE, relative density has been introduced to measure the local density of every minority sample, and the non-noisy minority samples are divided into the borderline samples and safe samples adaptively basing their distinguishing characteristics of relative density.

65 citations

Posted Content
TL;DR: DeepSMOTE as discussed by the authors is a novel oversampling algorithm for deep learning models, which consists of three major components: an encoder/decoder framework, SMOTE-based over-sampling, and a dedicated loss function that is enhanced with a penalty term.
Abstract: Despite over two decades of progress, imbalanced data is still considered a significant challenge for contemporary machine learning models. Modern advances in deep learning have magnified the importance of the imbalanced data problem. The two main approaches to address this issue are based on loss function modifications and instance resampling. Instance sampling is typically based on Generative Adversarial Networks (GANs), which may suffer from mode collapse. Therefore, there is a need for an oversampling method that is specifically tailored to deep learning models, can work on raw images while preserving their properties, and is capable of generating high quality, artificial images that can enhance minority classes and balance the training set. We propose DeepSMOTE - a novel oversampling algorithm for deep learning models. It is simple, yet effective in its design. It consists of three major components: (i) an encoder/decoder framework; (ii) SMOTE-based oversampling; and (iii) a dedicated loss function that is enhanced with a penalty term. An important advantage of DeepSMOTE over GAN-based oversampling is that DeepSMOTE does not require a discriminator, and it generates high-quality artificial images that are both information-rich and suitable for visual inspection. DeepSMOTE code is publicly available at: this https URL

52 citations

Journal ArticleDOI
TL;DR: This paper proposes the first compound framework for dealing with multi-class big data problems, addressing at the same time the existence of multiple classes and high volumes of data, and proposes an efficient implementation of the discussed algorithm on Apache Spark.
Abstract: Despite more than two decades of progress, learning from imbalanced data is still considered as one of the contemporary challenges in machine learning. This has been further complicated by the advent of the big data era, where popular algorithms dedicated to alleviating the class skew impact are no longer feasible due to the volume of datasets. Additionally, most of existing algorithms focus on binary imbalanced problems, where majority and minority classes are well-defined. Multi-class imbalanced data poses further challenges as the relationship between classes is much more complex and simple decomposition into a number of binary problems leads to a significant loss of information. In this paper, we propose the first compound framework for dealing with multi-class big data problems, addressing at the same time the existence of multiple classes and high volumes of data. We propose to analyze the instance-level difficulties in each class, leading to understanding what causes learning difficulties. We embed this information in popular resampling algorithms which allows for informative balancing of multiple classes. We propose an efficient implementation of the discussed algorithm on Apache Spark, including a novel version of SMOTE that overcomes spatial limitations in distributed environments of its predecessor. Extensive experimental study shows that using instance-level information significantly improves learning from multi-class imbalanced big data. Our framework can be downloaded from https://github.com/fsleeman/minority-type-imbalanced .

50 citations

References
More filters
Journal Article
TL;DR: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems, focusing on bringing machine learning to non-specialists using a general-purpose high-level language.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.sourceforge.net.

47,974 citations

Posted Content
TL;DR: Scikit-learn as mentioned in this paper is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from this http URL.

28,898 citations

Book
01 Jan 1983
TL;DR: In this paper, a generalization of the analysis of variance is given for these models using log- likelihoods, illustrated by examples relating to four distributions; the Normal, Binomial (probit analysis, etc.), Poisson (contingency tables), and gamma (variance components).
Abstract: The technique of iterative weighted linear regression can be used to obtain maximum likelihood estimates of the parameters with observations distributed according to some exponential family and systematic effects that can be made linear by a suitable transformation. A generalization of the analysis of variance is given for these models using log- likelihoods. These generalized linear models are illustrated by examples relating to four distributions; the Normal, Binomial (probit analysis, etc.), Poisson (contingency tables) and gamma (variance components).

23,215 citations

Journal ArticleDOI
TL;DR: A general gradient descent boosting paradigm is developed for additive expansions based on any fitting criterion, and specific algorithms are presented for least-squares, least absolute deviation, and Huber-M loss functions for regression, and multiclass logistic likelihood for classification.
Abstract: Function estimation/approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest-descent minimization. A general gradient descent “boosting” paradigm is developed for additive expansions based on any fitting criterion.Specific algorithms are presented for least-squares, least absolute deviation, and Huber-M loss functions for regression, and multiclass logistic likelihood for classification. Special enhancements are derived for the particular case where the individual additive components are regression trees, and tools for interpreting such “TreeBoost” models are presented. Gradient boosting of regression trees produces competitive, highly robust, interpretable procedures for both regression and classification, especially appropriate for mining less than clean data. Connections between this approach and the boosting methods of Freund and Shapire and Friedman, Hastie and Tibshirani are discussed.

17,764 citations

01 Jan 2007

17,341 citations