scispace - formally typeset
Journal ArticleDOI

Geometrical Optics-Based Advanced Design of an Open Cavity Resonant Antenna

05 Jan 2021-IEEE Antennas and Wireless Propagation Letters (IEEE)-Vol. 20, Iss: 3, pp 322-326

...read more


References
More filters
Journal ArticleDOI

[...]

TL;DR: In this paper, the authors investigated the effect of placing a partially reflecting sheet in front of an antenna with a reflecting screen at a wavelength of 3.2 cm and showed that large arrays produce considerably greater directivity but their efficiency is poor.
Abstract: Multiple reflections of electromagnetic waves between two planes are studied, and the increase in directivity that results by placing a partially reflecting sheet in front of an antenna with a reflecting screen is investigated at a wavelength of 3.2 cm. The construction and performance of various models of such arrays is discussed. Thus, for example, a "reflex-cavity antenna" with an outer diameter of 1.88 \lambda and an over-all length of only 0.65 \lambda is described which has half-power beamwidths of 34\deg and 41\deg in the E and H planes, respectively, and a gain of approximately 14 db. It is shown that larger systems produce considerably greater directivity but that their efficiency is poor.

832 citations

Journal ArticleDOI

[...]

TL;DR: The method is extended to produce narrow patterns about the horizon, and directive patterns at two different angles, and the bandwidth limitation of the method is discussed.
Abstract: Resonance conditions for a substrate-superstrate printed antenna geometry which allow for large antenna gain are presented. Asymptotic formulas for gain, beamwidth, and bandwidth are given, and the bandwidth limitation of the method is discussed. The method is extended to produce narrow patterns about the horizon, and directive patterns at two different angles.

549 citations

Journal ArticleDOI

[...]

TL;DR: In this article, a leaky-wave analysis is used to explain the narrow-beam resonance gain phenomenon in which narrow beams may be produced from a printed antenna element in a substrate-superstrate geometry.
Abstract: A leaky-wave analysis is used to explain the narrow-beam resonance-gain phenomenon in which narrow beams may be produced from a printed antenna element in a substrate-superstrate geometry. It is demonstrated that the phenomenon is attributable to the presence of both transverse electric and transverse magnetic-mode leaky waves, that are excited on the structure. Asymptotic formulas for the leaky wave are compared with the exact patterns to demonstrate the dominant role of the leaky waves in determining the pattern. Results are presented as a function of frequency, the scan angle, and the permittivity of the superstrate. >

308 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, two different defects, one introduced by the ground plane of the antenna and the other produced by a row of defect rods with different dielectric constants in the EBG structure, are simultaneously used as key controllers of directivity enhancement.
Abstract: We present some applications of an electromagnetic bandgap (EBG) superstrate as a spatial angular filter for filtering undesired radiation by sharpening the radiation pattern. Two different defects, one introduced by the ground plane of the antenna and the other produced by a row of defect rods with different dielectric constants in the EBG structure, are simultaneously used as key controllers of directivity enhancement. Initially, we study the unit cell of the EBG structures by varying several parameters, in order to understand how they influence the locations of the bandgap and defect frequencies. Next, the defect frequencies of the unit cell of the EBG cover, and those with high directivity for the EBG antenna composite, are compared to validate the proposed design scheme. Finally, we introduce some interesting applications of EBG superstrates for various types of patch antennas as spatial angular filters, such as a dual-band orthogonally-polarized antenna, a wide-band directive antenna, and an array antenna with grating lobes.

250 citations

Journal ArticleDOI

[...]

T.K.C. Lo1, Chun-On Ho1, Y. Hwang1, E.K.W. Lam1, B. Lee2 
TL;DR: In this article, a miniature aperture-coupled microstrip antenna of very high permittivity designed at 1.66 GHz is described, where superstrates of appropriate thickness are added on the substrate for gain enhancement.
Abstract: A miniature aperture-coupled microstrip antenna of very high permittivity designed at 1.66 GHz is described. Superstrates of appropriate thickness are added on the substrate for gain enhancement. Its size is dramatically reduced and the electrical performance remains almost the same as compared with the conventional microstrip antenna of low dielectric constant. Experimental data for the return loss, radiation pattern and measured antenna gain are presented to validate the design.

198 citations