scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Germanium Based Field-Effect Transistors: Challenges and Opportunities

19 Mar 2014-Materials (MDPI AG)-Vol. 7, Iss: 3, pp 2301-2339
TL;DR: This work reviews the two major remaining challenges that Ge based devices must overcome if they are to replace Si as the channel material, namely, heterogeneous integration of Ge on Si substrates, and developing a suitable gate stack.
Abstract: The performance of strained silicon (Si) as the channel material for today's metal-oxide-semiconductor field-effect transistors may be reaching a plateau. New channel materials with high carrier mobility are being investigated as alternatives and have the potential to unlock an era of ultra-low-power and high-speed microelectronic devices. Chief among these new materials is germanium (Ge). This work reviews the two major remaining challenges that Ge based devices must overcome if they are to replace Si as the channel material, namely, heterogeneous integration of Ge on Si substrates, and developing a suitable gate stack. Next, Ge is compared to compound III-V materials in terms of p-channel device performance to review how it became the first choice for PMOS devices. Different Ge device architectures, including surface channel and quantum well configurations, are reviewed. Finally, state-of-the-art Ge device results and future prospects are also discussed.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a high-k/Ge stack-based capacitated capacitated capacitor with high dielectric properties was investigated for several oxidation/nitridation durations, i.e., 5 -20min.

1 citations

Journal ArticleDOI
TL;DR: In this article , molecular dynamics simulations were employed to investigate the formation energies, total formation free energies and formation entropies of the point defects in a germanium crystal, and they found that the formation energy increased slightly with temperature.
Abstract: Point defects are crucial in determining the quality of germanium crystals. A quantitative understanding of the thermodynamic formation properties of the point defects is necessary for the subsequent control of the defect formation during crystal growth. Here, molecular dynamics simulations were employed to investigate the formation energies, total formation free energies and formation entropies of the point defects in a germanium crystal. As far as we know, this is the first time that the total formation free energies of point defects in a germanium crystal have been reported in the literature. We found that the formation energies increased slightly with temperature. The formation free energies decreased significantly with an increase in temperature due to the increase in entropy. The estimated total formation free energies at the melting temperature are ~1.3 eV for self-interstitial and ~0.75 eV for vacancy, corresponding to a formation entropy of ~15 kB for both types of point defects.

1 citations

25 May 2023
TL;DR: In this paper , the concept of Ge/Au-based mid-infrared plasmonic waveguides was extended to enable broadband liquid detection by using high-quality dielectric passivation layers deposited by atomic layer deposition.
Abstract: Liquid spectroscopy in the mid-infrared spectral range is a very powerful, yet premature technique for selective and sensitive molecule detection. Due to the lack of suitable concepts and materials for versatile miniaturized sensors, it is often still limited to bulky systems and offline analytics. Mid-infrared plasmonics is a promising field of current research for such compact and surface-sensitive structures, enabling new pathways for much-needed photonic integrated sensors. In this work, we focus on extending the concept of Ge/Au-based mid-infrared plasmonic waveguides to enable broadband liquid detection. Through the implementation of high-quality dielectric passivation layers deposited by atomic layer deposition (ALD), we cover the weak and water-soluble Ge native oxide. We show that approximately 10 nm of e.g. Al2O3 or ZrO2 can already protect the plasmonic waveguides for up to 90 min of direct water exposure. This unlocks integrated sensing schemes for broadband molecule detection based on mid-infrared plasmonics. In a proof-of-concept experiment, we further demonstrate that the ZrO2 coated waveguides can be activated by surface functionalization, allowing the selective measurement of diethyl ether at a wavelength of 9.38 {\mu}m.

1 citations

Proceedings ArticleDOI
19 May 2021
TL;DR: In this article, the effect of variations in temperature and interface trap charges (ITC) on the analog and radio-frequency (RF) performance parameters of a Si/Ge heterojunction (HJ) asymmetric double-gate (ADG) dopingless (DL) tunnel field effect transistor (TFET) with high-κ gate dielectric and abbreviated as HJ-ADG-DLTFET was investigated.
Abstract: This manuscript investigates the effect of variations in temperature and interface trap charges (ITC) on the analog and radio-frequency (RF) performance parameters of a Si/Ge heterojunction(HJ) asymmetric double-gate (ADG) dopingless (DL) tunnel field-effect transistor (TFET) with high-κ gate dielectric and abbreviated as HJ-ADG-DLTFET in the manuscript. The HJ-ADG-DLTFET makes use of small bandgap source material (i.e., Germanium (Ge)) instead of Silicon (Si). Consequently, increment in band-to-band tunneling (BTBT) and hence drain current flowing across source-channel tunneling junction, due to Si channel. The simulation is done by utilizing Silvaco ATLAS device simulator at various ITC density and polarity and, for a broad temperature spectrum from 200 – 400 K. The results illustrate that higher PITC (Positive ITC) density degrades device performance enormously. Furthermore, temperature variations for the range from 200 – 400 K demonstrate the degradation of the off-state current for HJ-ADG-DLTFET.

1 citations

Journal ArticleDOI
TL;DR: In this paper, the challenges of CMP for new materials beyond Si with high electron and hole mobilities such as Ge, SiGe, and III-V materials are reviewed.
Abstract: As the scaling of the device dimensions in CMOS devices runs into physical limitations, new materials beyond Si with high electron and hole mobilities such as Ge, SiGe, and III-V materials are introduced. Challenges of CMP for these materials are reviewed in this paper. First we discussed the challenge of the new integration schemes to CMP. Loading effects can result in different growth rates for varying feature sizes, which results in a critical dimension dependent overburden. This makes it more difficult to meet the targets of the CMP process with respect to oxide loss and Ge/SiGe/III-V dishing. Secondly we discuss the challenge for the reduction of the defects during CMP for these new materials. Finally the challenge that is relevant especially for the introduction of III-V materials is studied. During the polishing of III-V materials, toxic gases as well as III-V containing liquid waste will be created. The chemical mechanism of the waste control is discussed.

1 citations

References
More filters
Book
04 Jul 1990
TL;DR: In this article, the authors present a characterization of the resistivity of a two-point-versus-four-point probe in terms of the number of contacts and the amount of contacts in the probe.
Abstract: Preface to Third Edition. 1 Resistivity. 1.1 Introduction. 1.2 Two-Point Versus Four-Point Probe. 1.3 Wafer Mapping. 1.4 Resistivity Profiling. 1.5 Contactless Methods. 1.6 Conductivity Type. 1.7 Strengths and Weaknesses. Appendix 1.1 Resistivity as a Function of Doping Density. Appendix 1.2 Intrinsic Carrier Density. References. Problems. Review Questions. 2 Carrier and Doping Density. 2.1 Introduction. 2.2 Capacitance-Voltage (C-V). 2.3 Current-Voltage (I-V). 2.4 Measurement Errors and Precautions. 2.5 Hall Effect. 2.6 Optical Techniques. 2.7 Secondary Ion Mass Spectrometry (SIMS). 2.8 Rutherford Backscattering (RBS). 2.9 Lateral Profiling. 2.10 Strengths and Weaknesses. Appendix 2.1 Parallel or Series Connection? Appendix 2.2 Circuit Conversion. References. Problems. Review Questions. 3 Contact Resistance and Schottky Barriers. 3.1 Introduction. 3.2 Metal-Semiconductor Contacts. 3.3 Contact Resistance. 3.4 Measurement Techniques. 3.5 Schottky Barrier Height. 3.6 Comparison of Methods. 3.7 Strengths and Weaknesses. Appendix 3.1 Effect of Parasitic Resistance. Appendix 3.2 Alloys for Contacts to Semiconductors. References. Problems. Review Questions. 4 Series Resistance, Channel Length and Width, and Threshold Voltage. 4.1 Introduction. 4.2 PN Junction Diodes. 4.3 Schottky Barrier Diodes. 4.4 Solar Cells. 4.5 Bipolar Junction Transistors. 4.6 MOSFETS. 4.7 MESFETS and MODFETS. 4.8 Threshold Voltage. 4.9 Pseudo MOSFET. 4.10 Strengths and Weaknesses. Appendix 4.1 Schottky Diode Current-Voltage Equation. References. Problems. Review Questions. 5 Defects. 5.1 Introduction. 5.2 Generation-Recombination Statistics. 5.3 Capacitance Measurements. 5.4 Current Measurements. 5.5 Charge Measurements. 5.6 Deep-Level Transient Spectroscopy (DLTS). 5.7 Thermally Stimulated Capacitance and Current. 5.8 Positron Annihilation Spectroscopy (PAS). 5.9 Strengths and Weaknesses. Appendix 5.1 Activation Energy and Capture Cross-Section. Appendix 5.2 Time Constant Extraction. Appendix 5.3 Si and GaAs Data. References. Problems. Review Questions. 6 Oxide and Interface Trapped Charges, Oxide Thickness. 6.1 Introduction. 6.2 Fixed, Oxide Trapped, and Mobile Oxide Charge. 6.3 Interface Trapped Charge. 6.4 Oxide Thickness. 6.5 Strengths and Weaknesses. Appendix 6.1 Capacitance Measurement Techniques. Appendix 6.2 Effect of Chuck Capacitance and Leakage Current. References. Problems. Review Questions. 7 Carrier Lifetimes. 7.1 Introduction. 7.2 Recombination Lifetime/Surface Recombination Velocity. 7.3 Generation Lifetime/Surface Generation Velocity. 7.4 Recombination Lifetime-Optical Measurements. 7.5 Recombination Lifetime-Electrical Measurements. 7.6 Generation Lifetime-Electrical Measurements. 7.7 Strengths and Weaknesses. Appendix 7.1 Optical Excitation. Appendix 7.2 Electrical Excitation. References. Problems. Review Questions. 8 Mobility. 8.1 Introduction. 8.2 Conductivity Mobility. 8.3 Hall Effect and Mobility. 8.4 Magnetoresistance Mobility. 8.5 Time-of-Flight Drift Mobility. 8.6 MOSFET Mobility. 8.7 Contactless Mobility. 8.8 Strengths and Weaknesses. Appendix 8.1 Semiconductor Bulk Mobilities. Appendix 8.2 Semiconductor Surface Mobilities. Appendix 8.3 Effect of Channel Frequency Response. Appendix 8.4 Effect of Interface Trapped Charge. References. Problems. Review Questions. 9 Charge-based and Probe Characterization. 9.1 Introduction. 9.2 Background. 9.3 Surface Charging. 9.4 The Kelvin Probe. 9.5 Applications. 9.6 Scanning Probe Microscopy (SPM). 9.7 Strengths and Weaknesses. References. Problems. Review Questions. 10 Optical Characterization. 10.1 Introduction. 10.2 Optical Microscopy. 10.3 Ellipsometry. 10.4 Transmission. 10.5 Reflection. 10.6 Light Scattering. 10.7 Modulation Spectroscopy. 10.8 Line Width. 10.9 Photoluminescence (PL). 10.10 Raman Spectroscopy. 10.11 Strengths and Weaknesses. Appendix 10.1 Transmission Equations. Appendix 10.2 Absorption Coefficients and Refractive Indices for Selected Semiconductors. References. Problems. Review Questions. 11 Chemical and Physical Characterization. 11.1 Introduction. 11.2 Electron Beam Techniques. 11.3 Ion Beam Techniques. 11.4 X-Ray and Gamma-Ray Techniques. 11.5 Strengths and Weaknesses. Appendix 11.1 Selected Features of Some Analytical Techniques. References. Problems. Review Questions. 12 Reliability and Failure Analysis. 12.1 Introduction. 12.2 Failure Times and Acceleration Factors. 12.3 Distribution Functions. 12.4 Reliability Concerns. 12.5 Failure Analysis Characterization Techniques. 12.6 Strengths and Weaknesses. Appendix 12.1 Gate Currents. References. Problems. Review Questions. Appendix 1 List of Symbols. Appendix 2 Abbreviations and Acronyms. Index.

6,573 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the literature in the area of alternate gate dielectrics is given, based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success.
Abstract: Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm complementary metal–oxide–semiconductor (CMOS) technology. A systematic consideration of the required properties of gate dielectrics indicates that the key guidelines for selecting an alternative gate dielectric are (a) permittivity, band gap, and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. A review of current work and literature in the area of alternate gate dielectrics is given. Based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success...

5,711 citations

Journal ArticleDOI
TL;DR: In this paper, the surface chemistry of the trimethylaluminum/water ALD process is reviewed, with an aim to combine the information obtained in different types of investigations, such as growth experiments on flat substrates and reaction chemistry investigation on high-surface-area materials.
Abstract: Atomic layer deposition(ALD), a chemical vapor deposition technique based on sequential self-terminating gas–solid reactions, has for about four decades been applied for manufacturing conformal inorganic material layers with thickness down to the nanometer range. Despite the numerous successful applications of material growth by ALD, many physicochemical processes that control ALD growth are not yet sufficiently understood. To increase understanding of ALD processes, overviews are needed not only of the existing ALD processes and their applications, but also of the knowledge of the surface chemistry of specific ALD processes. This work aims to start the overviews on specific ALD processes by reviewing the experimental information available on the surface chemistry of the trimethylaluminum/water process. This process is generally known as a rather ideal ALD process, and plenty of information is available on its surface chemistry. This in-depth summary of the surface chemistry of one representative ALD process aims also to provide a view on the current status of understanding the surface chemistry of ALD, in general. The review starts by describing the basic characteristics of ALD, discussing the history of ALD—including the question who made the first ALD experiments—and giving an overview of the two-reactant ALD processes investigated to date. Second, the basic concepts related to the surface chemistry of ALD are described from a generic viewpoint applicable to all ALD processes based on compound reactants. This description includes physicochemical requirements for self-terminating reactions,reaction kinetics, typical chemisorption mechanisms, factors causing saturation, reasons for growth of less than a monolayer per cycle, effect of the temperature and number of cycles on the growth per cycle (GPC), and the growth mode. A comparison is made of three models available for estimating the sterically allowed value of GPC in ALD. Third, the experimental information on the surface chemistry in the trimethylaluminum/water ALD process are reviewed using the concepts developed in the second part of this review. The results are reviewed critically, with an aim to combine the information obtained in different types of investigations, such as growth experiments on flat substrates and reaction chemistry investigation on high-surface-area materials. Although the surface chemistry of the trimethylaluminum/water ALD process is rather well understood, systematic investigations of the reaction kinetics and the growth mode on different substrates are still missing. The last part of the review is devoted to discussing issues which may hamper surface chemistry investigations of ALD, such as problematic historical assumptions, nonstandard terminology, and the effect of experimental conditions on the surface chemistry of ALD. I hope that this review can help the newcomer get acquainted with the exciting and challenging field of surface chemistry of ALD and can serve as a useful guide for the specialist towards the fifth decade of ALD research.

2,212 citations

Journal ArticleDOI
TL;DR: In this paper, the Schottky barrier heights and band offsets for high dielectric constant oxides on Pt and Si were calculated and good agreement with experiment is found for barrier heights.
Abstract: Wide-band-gap oxides such as SrTiO3 are shown to be critical tests of theories of Schottky barrier heights based on metal-induced gap states and charge neutrality levels. This theory is reviewed and used to calculate the Schottky barrier heights and band offsets for many important high dielectric constant oxides on Pt and Si. Good agreement with experiment is found for barrier heights. The band offsets for electrons on Si are found to be small for many key oxides such as SrTiO3 and Ta2O5 which limit their utility as gate oxides in future silicon field effect transistors. The calculations are extended to screen other proposed oxides such as BaZrO3. ZrO2, HfO2, La2O3, Y2O3, HfSiO4, and ZrSiO4. Predictions are also given for barrier heights of the ferroelectric oxides Pb1−xZrxTiO3 and SrBi2Ta2O9 which are used in nonvolatile memories.

1,947 citations


"Germanium Based Field-Effect Transi..." refers background in this paper

  • ...Both the conduction and valence band offsets (CBO and VBO respectively) must be at least 1 eV in order to suppress Schottky emission of electrons or holes into the oxide bands (another source of leakage current) [96]....

    [...]

Journal ArticleDOI
D. J. Eaglesham1, M. Cerullo1
TL;DR: It is shown that the islands formed in Stranski-Krastanow (SK) growth of Ge on Si(100) are initially dislocation free, and the limiting critical thickness of coherent SK islands is shown to be higher than that for 2D growth.
Abstract: We show that the islands formed in Stranski-Krastanow (SK) growth of Ge on Si(100) are initially dislocation free. Island formation in true SK growth should be driven by strain relaxation in large, dislocated islands. Coherent SK growth is explained in terms of elastic deformation around the islands, which partially accommodates mismatch. The limiting critical thickness, ${\mathit{h}}_{\mathit{c}}$, of coherent SK islands is shown to be higher than that for 2D growth. We demonstrate growth of dislocation-free Ge islands on Si to a thickness of \ensuremath{\approxeq}500 \AA{}, 50\ifmmode\times\else\texttimes\fi{}higher than ${\mathit{h}}_{\mathit{c}}$ for 2D Ge/Si epitaxy.

1,751 citations


"Germanium Based Field-Effect Transi..." refers background in this paper

  • ...This strain energy is primarily relieved by two mechanisms: (i) generation of lattice dislocations at the interface (misfit dislocations) and (ii) elastic deformation of both the substrate and the Ge islands which form on the surface during early stages of growth (following the Stranski-Krastanow growth mode) [32]....

    [...]

Trending Questions (1)
What are the challenges and opportunities in the field of Ge optics?

The provided paper does not discuss the challenges and opportunities in the field of Ge optics. The paper focuses on the challenges and opportunities of germanium-based field-effect transistors.