scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images

TL;DR: Wang et al. as mentioned in this paper integrated glacier inventory data and 426 Landsat TM/ETM+/OLI images, and adopted manual visual interpretation to extract glacial lake boundaries within a 10-km buffer from glacier terminals using ArcGIS and ENVI software, normalized difference water index maps, and Google Earth images.
Abstract: . There is currently no glacial lake inventory data set for the entire High Mountain Asia (HMA) area. The definition and classification of glacial lakes remain controversial, presenting certain obstacles to extensive utilization of glacial lake inventory data. This study integrated glacier inventory data and 426 Landsat TM/ETM+/OLI images, and adopted manual visual interpretation to extract glacial lake boundaries within a 10-km buffer from glacier terminals using ArcGIS and ENVI software, normalized difference water index maps, and Google Earth images. The theoretical and methodological basis for all processing steps including glacial lake definition and classification, lake boundary delineation, and error assessment are discussed comprehensively in the paper. Moreover, detailed information regarding the coding, location, perimeter and area, area error, type, time phase, source image information, and sub-regions of the located lakes is presented. It was established that 26,089 and 28,953 glacial lakes in HMA, with sizes of 0.0054–5.83 km2, covered a combined area of 1692.74 ± 231.44 and 1955.94 ± 259.68 km2 in 1990 and 2018, respectively. The data set now is available at the National Special Environment and Function of Observation and Research Stations Shared Service Platform (China) at http://dx.doi.org/10.12072/casnw.064.2019.db (Wang et al., 2019a).

Content maybe subject to copyright    Report

Citations
More filters
01 Dec 2013
TL;DR: This paper found that the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent, due to changes in atmospheric circulations and precipitation patterns.
Abstract: Glacial melting in the Tibetan Plateau affects the water resources of millions of people. This study finds that—partly owing to changes in atmospheric circulations and precipitation patterns—the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent.

1,599 citations

15 Dec 2015
TL;DR: In this paper, the first glacial lake in- ventories for the Third Pole were conducted for ~1990, 2000, and 2010 using Landsat TM/ETM+ data.
Abstract: article i nfo No glacial lake census exists for the Third Pole region, which includes the Pamir-Hindu Kush-Karakoram- Himalayas and the Tibetan Plateau. Therefore, comprehensive information is lacking about the distribution of and changes in glacial lakes caused by current global warming conditions. In this study, the first glacial lake in- ventories for the Third Pole were conducted for ~1990, 2000, and 2010 using Landsat TM/ETM+ data. Glacial lake spatial distributions, corresponding areas and temporal changes were examined. The significant results are as follows. (1) There were 4602, 4981, and 5701 glacial lakes (N0.003 km 2 ) covering areas of 553.9 ± 90, 581.2 ± 97, and 682.4 ± 110 km 2 in ~1990, 2000, and 2010, respectively; these lakes are primarily located in the Brahmaputra (39%),Indus (28%), and AmuDarya (10%) basins. (2) Small lakes (b0.2 km 2 ) are more sensitive to climate changes. (3) Lakes closer to glaciers and at higher altitudes, particularly thoseconnected to glacier ter- mini, have undergone larger area changes. (4) Glacier-fed lakes are dominant in both quantity and area (N70%) and exhibit faster expansion trends overall compared to non-glacier-fed lakes. We conclude that glacier meltwa- ter may play a dominant role in the areal expansion of most glacial lakes in the Third Pole. In addition, the pat- terns of the glacier-fed lakes correspond well with warming temperature trends and negative glacier mass balance patterns. This paper presents an important database of glacial lakes and provides a basis for long-term monitoring and evaluation of outburst flood disasters primarily caused by glacial lakes in the Third Pole.

206 citations

Journal ArticleDOI
01 Feb 2021
TL;DR: In this article, the authors discuss how and why glaciers and meltwater supplies have changed, how they will likely evolve in the future and how these changes impact water resources and water-related hazards.
Abstract: Glaciers in the Himalaya–Karakoram mountain ranges harbour approximately half of the ice volume in High-mountain Asia and modulate the flow of freshwater to almost 869 million people within the Indus, Tarim, Ganges and Brahmaputra river basins Since the mid-twentieth century, rising temperatures have led to unsustainably high melting rates for many glaciers, particularly in the Himalaya, temporarily increasing summer meltwater run-off but continuously reducing the ice-storage volume In this Review, we discuss how and why glaciers and meltwater supplies have changed, how they will likely evolve in the future and how these changes impact water resources and water-related hazards Heterogeneous glacier retreat is changing streamflow patterns, in turn, affecting the incidence of glacial-lake outburst floods and exacerbating the risk of flooding and water shortages associated with future climate change These changes could negatively impact downstream populations and infrastructure, including the thriving hydropower sector and some of the world’s largest irrigated agriculture systems, by making water flow more extreme and unpredictable An improved in situ monitoring network for weather, hydrology and glacier change is a crucial requirement for predicting the future of this resource and associated hazards, and their impact on regional water, energy and food security Glaciers in the Himalaya and Karakoram mountain ranges provide freshwater and hydropower to millions of people but are also melting at unsustainably high rates This Review discusses recent and projected changes in glacier melt and resulting implications for regional water-related hazards and water resources

118 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a HMA Glacial Lake Inventory (Hi-MAG) database to characterize the annual coverage of glacial lakes from 2008 to 2017 at 30'm resolution using Landsat satellite imagery.
Abstract: . Climate change is intensifying glacier melting and lake development in High Mountain Asia (HMA), which could increase glacial lake outburst flood hazards and impact water resource and hydroelectric power management. However, quantification of variability in size and type of glacial lakes at high resolution has been incomplete in HMA. Here, we developed a HMA Glacial Lake Inventory (Hi-MAG) database to characterize the annual coverage of glacial lakes from 2008 to 2017 at 30 m resolution using Landsat satellite imagery. It is noted that a rapid increase in lake number and moderate area expansion was influenced by a large population of small glacial lake (≤ 0.04 km2), and faster growth in lake number occurred above 5300 m elevation. Proglacial lake dominated areas showed significant lake area expansion, while unconnected lake dominated areas exhibited stability or slight reduction. Small glacial lakes accounted for approximately 15% of the lake area in Eastern Hindu Kush, Western Himalaya, Northern/Western Tien Shan, and Gangdise Mountains, but contributed > 50 % of lake area expansion in these regions over a decade. Our results demonstrate proglacial lakes are a main contributor while small glacial lakes are an overlooked element to recent lake evolution in HMA. Regional geographic variability of debris cover, together with trends in warming and precipitation over the past few decades, largely explain the current distribution of supra- and proglacial lake area across HMA. The Hi-MAG database are available at: https://doi.org/10.5281/zenodo.3700282 , it can be used for studies on glacier-climate-lake interactions, glacio-hydrologic models, glacial lake outburst floods and potential downstream risks and water resources.

84 citations

References
More filters
Journal ArticleDOI
TL;DR: The Normalized Difference Water Index (NDWI) as mentioned in this paper is a new method that has been developed to delineate open water features and enhance their presence in remotely-sensed digital imagery.
Abstract: The Normalized Difference Water Index (NDWI) is a new method that has been developed to delineate open water features and enhance their presence in remotely-sensed digital imagery. The NDWI makes use of reflected near-infrared radiation and visible green light to enhance the presence of such features while eliminating the presence of soil and terrestrial vegetation features. It is suggested that the NDWI may also provide researchers with turbidity estimations of water bodies using remotely-sensed digital data.

4,353 citations


Additional excerpts

  • ...…the NDWI based on the near infrared band (NIR) and green 7 band (GREEN), which represent the minimum and maximum water reflectance, respectively 8 (McFeeters, 1996; Zhai et al., 2015; Li et al., 2016; Zhang et al., 2018): 9 NDWI = 𝐵𝐺𝑅𝐸𝐸𝑁−𝐵𝑁𝐼𝑅 𝐵𝐺𝑅𝐸𝐸𝑁+𝐵𝑁𝐼𝑅 (1) 10 where Bi is the…...

    [...]

Journal ArticleDOI
TL;DR: This paper found that the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent, due to changes in atmospheric circulations and precipitation patterns.
Abstract: Glacial melting in the Tibetan Plateau affects the water resources of millions of people. This study finds that—partly owing to changes in atmospheric circulations and precipitation patterns—the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent.

1,738 citations

01 Dec 2013
TL;DR: This paper found that the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent, due to changes in atmospheric circulations and precipitation patterns.
Abstract: Glacial melting in the Tibetan Plateau affects the water resources of millions of people. This study finds that—partly owing to changes in atmospheric circulations and precipitation patterns—the most intensive glacier shrinkage is in the Himalayan region, whereas glacial retreat in the Pamir Plateau region is less apparent.

1,599 citations

Journal ArticleDOI
20 Apr 2012-Science
TL;DR: The contemporary evolution of glaciers in the Himalayan region is reviewed, including those of the less well sampled region of the Karakoram to the Northwest, in order to provide a current, comprehensive picture of how they are changing.
Abstract: Himalayan glaciers are a focus of public and scientific debate. Prevailing uncertainties are of major concern because some projections of their future have serious implications for water resources. Most Himalayan glaciers are losing mass at rates similar to glaciers elsewhere, except for emerging indications of stability or mass gain in the Karakoram. A poor understanding of the processes affecting them, combined with the diversity of climatic conditions and the extremes of topographical relief within the region, makes projections speculative. Nevertheless, it is unlikely that dramatic changes in total runoff will occur soon, although continuing shrinkage outside the Karakoram will increase the seasonality of runoff, affect irrigation and hydropower, and alter hazards.

1,561 citations

Journal ArticleDOI
17 May 2013-Science
TL;DR: It is found that glaciers in the Arctic, Canada, Alaska, coastal Greenland, the southern Andes, and high-mountain Asia contribute approximately as much melt water as the ice sheets themselves: 260 billion tons per year between 2003 and 2009, accounting for about 30% of the observed sea-level rise during that period.
Abstract: Glaciers distinct from the Greenland and Antarctic Ice Sheets are losing large amounts of water to the world's oceans. However, estimates of their contribution to sea level rise disagree. We provide a consensus estimate by standardizing existing, and creating new, mass-budget estimates from satellite gravimetry and altimetry and from local glaciological records. In many regions, local measurements are more negative than satellite-based estimates. All regions lost mass during 2003-2009, with the largest losses from Arctic Canada, Alaska, coastal Greenland, the southern Andes, and high-mountain Asia, but there was little loss from glaciers in Antarctica. Over this period, the global mass budget was -259 ± 28 gigatons per year, equivalent to the combined loss from both ice sheets and accounting for 29 ± 13% of the observed sea level rise.

1,102 citations

Trending Questions (1)
How many papers are available for glacial lakes?>?

The paper does not provide information on the number of papers available for glacial lakes. The paper is about the glacial lake inventory of High Mountain Asia in 1990 and 2018.