scispace - formally typeset
Open AccessJournal ArticleDOI

Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers

Reads0
Chats0
TLDR
Tumour-derived microvesicles may provide diagnostic information and aid in therapeutic decisions for cancer patients through a blood test by incorporating an mRNA for a reporter protein into them, and it is demonstrated that messages delivered by microvesicle are translated by recipient cells.
Abstract
Glioblastoma tumour cells release microvesicles (exosomes) containing mRNA, miRNA and angiogenic proteins. These microvesicles are taken up by normal host cells, such as brain microvascular endothelial cells. By incorporating an mRNA for a reporter protein into these microvesicles, we demonstrate that messages delivered by microvesicles are translated by recipient cells. These microvesicles are also enriched in angiogenic proteins and stimulate tubule formation by endothelial cells. Tumour-derived microvesicles therefore serve as a means of delivering genetic information and proteins to recipient cells in the tumour environment. Glioblastoma microvesicles also stimulated proliferation of a human glioma cell line, indicating a self-promoting aspect. Messenger RNA mutant/variants and miRNAs characteristic of gliomas could be detected in serum microvesicles of glioblastoma patients. The tumour-specific EGFRvIII was detected in serum microvesicles from 7 out of 25 glioblastoma patients. Thus, tumour-derived microvesicles may provide diagnostic information and aid in therapeutic decisions for cancer patients through a blood test.

read more

Citations
More filters
Journal ArticleDOI

Extracellular vesicles: exosomes, microvesicles, and friends.

TL;DR: This review focuses on the characterization of EVs and on currently proposed mechanisms for their formation, targeting, and function.
Journal ArticleDOI

Shedding light on the cell biology of extracellular vesicles.

TL;DR: Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material.
Journal ArticleDOI

Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles

TL;DR: Exosomes were described as vesicles of endosomal origin secreted from reticulocytes in the 1980s as discussed by the authors, and their biogenesis, their secretion, and their subsequent fate are discussed, as their functions rely on these important processes.
Journal ArticleDOI

The biology, function, and biomedical applications of exosomes

TL;DR: The intrinsic properties of exosomes in regulating complex intracellular pathways has advanced their potential utility in the therapeutic control of many diseases, including neurodegenerative conditions and cancer.
Journal ArticleDOI

Biological properties of extracellular vesicles and their physiological functions

María Yáñez-Mó, +72 more
TL;DR: A comprehensive overview of the current understanding of the physiological roles of EVs is provided, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia.
References
More filters
Journal ArticleDOI

Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells

TL;DR: It is shown that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location, and it is proposed that this RNA is called “exosomal shuttle RNA” (esRNA).
Journal ArticleDOI

Angiogenesis in cancer and other diseases

TL;DR: Pathological angiogenesis is a hallmark of cancer and various ischaemic and inflammatory diseases and integrated understanding is leading to the development of a number of exciting and bold approaches to treat cancer and other diseases, but owing to several unanswered questions, caution is needed.
Journal ArticleDOI

Exosomes: composition, biogenesis and function

TL;DR: The physical properties that define exosomes as a specific population of secreted vesicles are described, their biological effects, particularly on the immune system, are summarized, and the potential roles that secretedvesicles could have as intercellular messengers are discussed.
Journal ArticleDOI

MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells.

TL;DR: It is shown that the highly malignant human brain tumor, glioblastoma, strongly over-expresses a specific miRNA, miR-21, which may contribute to the malignant phenotype by blocking expression of critical apoptosis-related genes.
Related Papers (5)
Trending Questions (1)
Do glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers?

Yes, glioblastoma microvesicles transport RNA and proteins that promote tumor growth and provide diagnostic biomarkers.