scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Global burden of cancer attributable to high body-mass index in 2012: a population-based study

TL;DR: The continuation of current patterns of population weight gain will lead to continuing increases in the future burden of cancer, and the need for a global effort to abate the increasing numbers of people with high BMI is emphasised.
Abstract: Summary Background High body-mass index (BMI; defined as 25 kg/m 2 or greater) is associated with increased risk of cancer. To inform public health policy and future research, we estimated the global burden of cancer attributable to high BMI in 2012. Methods In this population-based study, we derived population attributable fractions (PAFs) using relative risks and BMI estimates in adults by age, sex, and country. Assuming a 10-year lag-period between high BMI and cancer occurrence, we calculated PAFs using BMI estimates from 2002 and used GLOBOCAN2012 data to estimate numbers of new cancer cases attributable to high BMI. We also calculated the proportion of cancers that were potentially avoidable had populations maintained their mean BMIs recorded in 1982. We did secondary analyses to test the model and to estimate the effects of hormone replacement therapy (HRT) use and smoking. Findings Worldwide, we estimate that 481 000 or 3·6% of all new cancer cases in adults (aged 30 years and older after the 10-year lag period) in 2012 were attributable to high BMI. PAFs were greater in women than in men (5·4% vs 1·9%). The burden of attributable cases was higher in countries with very high and high human development indices (HDIs; PAF 5·3% and 4·8%, respectively) than in those with moderate (1·6%) and low HDIs (1·0%). Corpus uteri, postmenopausal breast, and colon cancers accounted for 63·6% of cancers attributable to high BMI. A quarter (about 118 000) of the cancer cases related to high BMI in 2012 could be attributed to the increase in BMI since 1982. Interpretation These findings emphasise the need for a global effort to abate the increasing numbers of people with high BMI. Assuming that the association between high BMI and cancer is causal, the continuation of current patterns of population weight gain will lead to continuing increases in the future burden of cancer. Funding World Cancer Research Fund International, European Commission (Marie Curie Intra-European Fellowship), Australian National Health and Medical Research Council, and US National Institutes of Health.
Citations
More filters
Journal ArticleDOI
TL;DR: These results may underestimate the overall proportion of cancers attributable to modifiable factors, because the impact of all established risk factors could not be quantified, and many likely modifiable risk factors are not yet firmly established as causal.
Abstract: Contemporary information on the fraction of cancers that potentially could be prevented is useful for priority setting in cancer prevention and control. Herein, the authors estimate the proportion and number of invasive cancer cases and deaths, overall (excluding nonmelanoma skin cancers) and for 26 cancer types, in adults aged 30 years and older in the United States in 2014, that were attributable to major, potentially modifiable exposures (cigarette smoking; secondhand smoke; excess body weight; alcohol intake; consumption of red and processed meat; low consumption of fruits/vegetables, dietary fiber, and dietary calcium; physical inactivity; ultraviolet radiation; and 6 cancer-associated infections). The numbers of cancer cases were obtained from the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute; the numbers of deaths were obtained from the CDC; risk factor prevalence estimates were obtained from nationally representative surveys; and associated relative risks of cancer were obtained from published, large-scale pooled analyses or meta-analyses. In the United States in 2014, an estimated 42.0% of all incident cancers (659,640 of 1570,975 cancers, excluding nonmelanoma skin cancers) and 45.1% of cancer deaths (265,150 of 587,521 deaths) were attributable to evaluated risk factors. Cigarette smoking accounted for the highest proportion of cancer cases (19.0%; 298,970 cases) and deaths (28.8%; 169,180 deaths), followed by excess body weight (7.8% and 6.5%, respectively) and alcohol intake (5.6% and 4.0%, respectively). Lung cancer had the highest number of cancers (184,970 cases) and deaths (132,960 deaths) attributable to evaluated risk factors, followed by colorectal cancer (76,910 cases and 28,290 deaths). These results, however, may underestimate the overall proportion of cancers attributable to modifiable factors, because the impact of all established risk factors could not be quantified, and many likely modifiable risk factors are not yet firmly established as causal. Nevertheless, these findings underscore the vast potential for reducing cancer morbidity and mortality through broad and equitable implementation of known preventive measures. CA Cancer J Clin 2018;68:31-54. © 2017 American Cancer Society.

870 citations


Cites result from "Global burden of cancer attributabl..."

  • ...We estimated that nearly 7% to 8% of all cancer cases and deaths in the United States were attributable to excess body weight and 4% to 6% of cases and deaths were due to alcohol intake, respectively, similar to other recent estimates.(6,7,11,75) Previous PAFs for poor diet included variable dietary factors and criteria,(76) but more recent PAFs are comparable to our estimates (4% to 5% of all cancer cases and deaths)....

    [...]

Journal ArticleDOI
TL;DR: The burden of cancer among women could be substantially reduced in both HICs and LMICs through broad and equitable implementation of effective interventions, including tobacco control, HPV and HBV vaccination, and screening (breast, cervix, and colorectum).
Abstract: This review is an abbreviated version of a report prepared for the American Cancer Society Global Health department and EMD Serono, Inc., a subsidiary of Merck KGaA, Darmstadt, Germany, which was released at the Union for International Cancer Control World Cancer Congress in Paris in November 2016. The original report can be found at https://www.cancer.org/health-care-professionals/our-global-health-work/global-cancer-burden/global-burden-of-cancer-in-women.html. Staff in the Intramural Research Department of the American Cancer Society designed and conducted the study, including analysis, interpretation, and presentation of the review. The funding sources had no involvement in the study design, data analysis and interpretation, or preparation of the reviewThere are striking disparities in the global cancer burden in women, yet few publications highlight cancer occurrence in this population, particularly for cancers that are not sex specific. This article, the first in a series of two, summarizes the current burden, trends, risk factors, prevention, early detection, and survivorship of all cancers combined and seven sites (breast, cervix, uterine corpus, ovary, colorectum, lung, and liver) that account for about 60% of the cancer burden among women worldwide, using data from the International Agency for Research on Cancer. Estimated 2012 overall cancer death rates in general are higher among women in low- and middle-income countries (LMICs) than high-income countries (HICs), despite their lower overall incidence rates, largely due to inadequate access to early detection and treatment. For example, the top mortality rates are in Zimbabwe (147 deaths per 100,000) and Malawi (138). Furthermore, incidence rates of cancers associated with economic development (e.g., lung, breast, colorectum) are rising in several LMICs. The burden of cancer among women could be substantially reduced in both HICs and LMICs through broad and equitable implementation of effective interventions, including tobacco control, HPV and HBV vaccination, and screening (breast, cervix, and colorectum). Cancer Epidemiol Biomarkers Prev; 26(4); 444-57. ©2017 AACRSee related article by Islami et al. in this CEBP Focus section, "Global Cancer in Women."

856 citations


Cites background from "Global burden of cancer attributabl..."

  • ...A substantial proportion of uterine corpus cancers could be avoided throughmaintenance of a healthy weight (73)....

    [...]

  • ...Salpingo-oophorectomy in women who test positive for inherited ovarian cancer susceptibility genes can reduce risk, and some ovarian cancers could be avoided through the maintenance of healthy weight (73)....

    [...]

  • ...Excess body weight alone is estimated to account for about 34% of uterine corpus cancer cases worldwide (73)....

    [...]

Journal ArticleDOI
TL;DR: There was a uniform decrease in gastric cancer incidence but an increasing incidence of colorectal cancer in formerly low-incidence regions over the studied time period, and slight increases in incidence of liver and pancreatic cancer in some high-income regions.

670 citations

Journal ArticleDOI
TL;DR: How the interplay of these main potential mechanisms and risk factors, exerts their effects on target tissues provoking them to acquire a cancerous phenotype is investigated.
Abstract: Continuously rising trends in obesity-related malignancies render this disease spectrum a public health priority. Worldwide, the burden of cancer attributable to obesity, expressed as population attributable fraction, is 11.9% in men and 13.1% in women. There is convincing evidence that excess body weight is associated with an increased risk for cancer of at least 13 anatomic sites, including endometrial, esophageal, renal and pancreatic adenocarcinomas; hepatocellular carcinoma; gastric cardia cancer; meningioma; multiple myeloma; colorectal, postmenopausal breast, ovarian, gallbladder and thyroid cancers. We first synopsize current epidemiologic evidence; the obesity paradox in cancer risk and mortality; the role of weight gain and weight loss in the modulation of cancer risk; reliable somatometric indicators for obesity and cancer research; and gender differences in obesity related cancers. We critically summarize emerging biological mechanisms linking obesity to cancer encompassing insulin resistance and abnormalities of the IGF-I system and signaling; sex hormones biosynthesis and pathway; subclinical chronic low-grade inflammation and oxidative stress; alterations in adipokine pathophysiology; factors deriving from ectopic fat deposition; microenvironment and cellular perturbations including vascular perturbations, epithelial-mesenchymal transition, endoplasmic reticulum stress and migrating adipose progenitor cells; disruption of circadian rhythms; dietary nutrients; factors with potential significance such as the altered intestinal microbiome; and mechanic factors in obesity and cancer. Future perspectives regarding prevention, diagnosis and therapeutics are discussed. The aim of this review is to investigate how the interplay of these main potential mechanisms and risk factors, exerts their effects on target tissues provoking them to acquire a cancerous phenotype.

646 citations


Cites background from "Global burden of cancer attributabl..."

  • ...1% in women for all obesity-related malignancies with a substantial worldwide variation depending on the prevalence of obesity and the relative risk estimates [52]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The GLOBOCAN series of the International Agency for Research on Cancer (IARC) as mentioned in this paper provides estimates of the worldwide incidence and mortality from 27 major cancers and for all cancers combined for 2012.
Abstract: Estimates of the worldwide incidence and mortality from 27 major cancers and for all cancers combined for 2012 are now available in the GLOBOCAN series of the International Agency for Research on Cancer. We review the sources and methods used in compiling the national cancer incidence and mortality estimates, and briefly describe the key results by cancer site and in 20 large “areas” of the world. Overall, there were 14.1 million new cases and 8.2 million deaths in 2012. The most commonly diagnosed cancers were lung (1.82 million), breast (1.67 million), and colorectal (1.36 million); the most common causes of cancer death were lung cancer (1.6 million deaths), liver cancer (745,000 deaths), and stomach cancer (723,000 deaths).

24,414 citations

Journal ArticleDOI
TL;DR: The results for 20 world regions are presented, summarizing the global patterns for the eight most common cancers, and striking differences in the patterns of cancer from region to region are observed.
Abstract: Estimates of the worldwide incidence and mortality from 27 cancers in 2008 have been prepared for 182 countries as part of the GLOBOCAN series published by the International Agency for Research on Cancer. In this article, we present the results for 20 world regions, summarizing the global patterns for the eight most common cancers. Overall, an estimated 12.7 million new cancer cases and 7.6 million cancer deaths occur in 2008, with 56% of new cancer cases and 63% of the cancer deaths occurring in the less developed regions of the world. The most commonly diagnosed cancers worldwide are lung (1.61 million, 12.7% of the total), breast (1.38 million, 10.9%) and colorectal cancers (1.23 million, 9.7%). The most common causes of cancer death are lung cancer (1.38 million, 18.2% of the total), stomach cancer (738,000 deaths, 9.7%) and liver cancer (696,000 deaths, 9.2%). Cancer is neither rare anywhere in the world, nor mainly confined to high-resource countries. Striking differences in the patterns of cancer from region to region are observed.

21,040 citations

Book
31 Dec 1997
TL;DR: The aim of this study was to establish a database of histological groups and to provide a level of consistency and quality of data that could be applied in the design of future registries.
Abstract: 1. Techniques of registration 2. Classification and coding 3. Histological groups 4. Comparability and quality of data 5. Data processing 6. Age-standardization 7. Incidence data by site and sex for each registry 8. Summary tables presenting age-standardized rates 9. Data on histological type for selected sites

10,160 citations

Journal ArticleDOI
Stephen S Lim1, Theo Vos, Abraham D. Flaxman1, Goodarz Danaei2  +207 moreInstitutions (92)
TL;DR: In this paper, the authors estimated deaths and disability-adjusted life years (DALYs; sum of years lived with disability [YLD] and years of life lost [YLL]) attributable to the independent effects of 67 risk factors and clusters of risk factors for 21 regions in 1990 and 2010.

9,324 citations

Journal ArticleDOI
Marie Ng1, Tom P Fleming1, Margaret Robinson1, Blake Thomson1, Nicholas Graetz1, Christopher Margono1, Erin C Mullany1, Stan Biryukov1, Cristiana Abbafati2, Semaw Ferede Abera3, Jerry Abraham4, Niveen M E Abu-Rmeileh, Tom Achoki1, Fadia AlBuhairan5, Zewdie Aderaw Alemu6, Rafael Alfonso1, Mohammed K. Ali7, Raghib Ali8, Nelson Alvis Guzmán9, Walid Ammar, Palwasha Anwari10, Amitava Banerjee11, Simón Barquera, Sanjay Basu12, Derrick A Bennett8, Zulfiqar A Bhutta13, Jed D. Blore14, N Cabral, Ismael Ricardo Campos Nonato, Jung-Chen Chang15, Rajiv Chowdhury16, Karen J. Courville, Michael H. Criqui17, David K. Cundiff, Kaustubh Dabhadkar7, Lalit Dandona1, Lalit Dandona18, Adrian Davis19, Anand Dayama7, Samath D Dharmaratne20, Eric L. Ding21, Adnan M. Durrani22, Alireza Esteghamati23, Farshad Farzadfar23, Derek F J Fay19, Valery L. Feigin24, Abraham D. Flaxman1, Mohammad H. Forouzanfar1, Atsushi Goto, Mark A. Green25, Rajeev Gupta, Nima Hafezi-Nejad23, Graeme J. Hankey26, Heather Harewood, Rasmus Havmoeller27, Simon I. Hay8, Lucia Hernandez, Abdullatif Husseini28, Bulat Idrisov29, Nayu Ikeda, Farhad Islami30, Eiman Jahangir31, Simerjot K. Jassal17, Sun Ha Jee32, Mona Jeffreys33, Jost B. Jonas34, Edmond K. Kabagambe35, Shams Eldin Ali Hassan Khalifa, Andre Pascal Kengne36, Yousef Khader37, Young-Ho Khang38, Daniel Kim39, Ruth W Kimokoti40, Jonas Minet Kinge41, Yoshihiro Kokubo, Soewarta Kosen, Gene F. Kwan42, Taavi Lai, Mall Leinsalu22, Yichong Li, Xiaofeng Liang43, Shiwei Liu43, Giancarlo Logroscino44, Paulo A. Lotufo45, Yuan Qiang Lu21, Jixiang Ma43, Nana Kwaku Mainoo, George A. Mensah22, Tony R. Merriman46, Ali H. Mokdad1, Joanna Moschandreas47, Mohsen Naghavi1, Aliya Naheed48, Devina Nand, K.M. Venkat Narayan7, Erica Leigh Nelson1, Marian L. Neuhouser49, Muhammad Imran Nisar13, Takayoshi Ohkubo50, Samuel Oti, Andrea Pedroza, Dorairaj Prabhakaran, Nobhojit Roy51, Uchechukwu K.A. Sampson35, Hyeyoung Seo, Sadaf G. Sepanlou23, Kenji Shibuya52, Rahman Shiri53, Ivy Shiue54, Gitanjali M Singh21, Jasvinder A. Singh55, Vegard Skirbekk41, Nicolas J. C. Stapelberg56, Lela Sturua57, Bryan L. Sykes58, Martin Tobias1, Bach Xuan Tran59, Leonardo Trasande60, Hideaki Toyoshima, Steven van de Vijver, Tommi Vasankari, J. Lennert Veerman61, Gustavo Velasquez-Melendez62, Vasiliy Victorovich Vlassov63, Stein Emil Vollset41, Stein Emil Vollset64, Theo Vos1, Claire L. Wang65, Xiao Rong Wang66, Elisabete Weiderpass, Andrea Werdecker, Jonathan L. Wright1, Y Claire Yang67, Hiroshi Yatsuya68, Jihyun Yoon, Seok Jun Yoon69, Yong Zhao70, Maigeng Zhou, Shankuan Zhu71, Alan D. Lopez14, Christopher J L Murray1, Emmanuela Gakidou1 
University of Washington1, Sapienza University of Rome2, Mekelle University3, University of Texas at San Antonio4, King Saud bin Abdulaziz University for Health Sciences5, Debre markos University6, Emory University7, University of Oxford8, University of Cartagena9, United Nations Population Fund10, University of Birmingham11, Stanford University12, Aga Khan University13, University of Melbourne14, National Taiwan University15, University of Cambridge16, University of California, San Diego17, Public Health Foundation of India18, Public Health England19, University of Peradeniya20, Harvard University21, National Institutes of Health22, Tehran University of Medical Sciences23, Auckland University of Technology24, University of Sheffield25, University of Western Australia26, Karolinska Institutet27, Birzeit University28, Brandeis University29, American Cancer Society30, Ochsner Medical Center31, Yonsei University32, University of Bristol33, Heidelberg University34, Vanderbilt University35, South African Medical Research Council36, Jordan University of Science and Technology37, New Generation University College38, Northeastern University39, Simmons College40, Norwegian Institute of Public Health41, Boston University42, Chinese Center for Disease Control and Prevention43, University of Bari44, University of São Paulo45, University of Otago46, University of Crete47, International Centre for Diarrhoeal Disease Research, Bangladesh48, Fred Hutchinson Cancer Research Center49, Teikyo University50, Bhabha Atomic Research Centre51, University of Tokyo52, Finnish Institute of Occupational Health53, Heriot-Watt University54, University of Alabama at Birmingham55, Griffith University56, National Center for Disease Control and Public Health57, University of California, Irvine58, Johns Hopkins University59, New York University60, University of Queensland61, Universidade Federal de Minas Gerais62, National Research University – Higher School of Economics63, University of Bergen64, Columbia University65, Shandong University66, University of North Carolina at Chapel Hill67, Fujita Health University68, Korea University69, Chongqing Medical University70, Zhejiang University71
TL;DR: The global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013 is estimated using a spatiotemporal Gaussian process regression model to estimate prevalence with 95% uncertainty intervals (UIs).

9,180 citations

Related Papers (5)
Marie Ng, Tom P Fleming, Margaret Robinson, Blake Thomson, Nicholas Graetz, Christopher Margono, Erin C Mullany, Stan Biryukov, Cristiana Abbafati, Semaw Ferede Abera, Jerry Abraham, Niveen M E Abu-Rmeileh, Tom Achoki, Fadia AlBuhairan, Zewdie Aderaw Alemu, Rafael Alfonso, Mohammed K. Ali, Raghib Ali, Nelson Alvis Guzmán, Walid Ammar, Palwasha Anwari, Amitava Banerjee, Simón Barquera, Sanjay Basu, Derrick A Bennett, Zulfiqar A Bhutta, Jed D. Blore, N Cabral, Ismael Ricardo Campos Nonato, Jung-Chen Chang, Rajiv Chowdhury, Karen J. Courville, Michael H. Criqui, David K. Cundiff, Kaustubh Dabhadkar, Lalit Dandona, Lalit Dandona, Adrian Davis, Anand Dayama, Samath D Dharmaratne, Eric L. Ding, Adnan M. Durrani, Alireza Esteghamati, Farshad Farzadfar, Derek F J Fay, Valery L. Feigin, Abraham D. Flaxman, Mohammad H. Forouzanfar, Atsushi Goto, Mark A. Green, Rajeev Gupta, Nima Hafezi-Nejad, Graeme J. Hankey, Heather Harewood, Rasmus Havmoeller, Simon I. Hay, Lucia Hernandez, Abdullatif Husseini, Bulat Idrisov, Nayu Ikeda, Farhad Islami, Eiman Jahangir, Simerjot K. Jassal, Sun Ha Jee, Mona Jeffreys, Jost B. Jonas, Edmond K. Kabagambe, Shams Eldin Ali Hassan Khalifa, Andre Pascal Kengne, Yousef Khader, Young-Ho Khang, Daniel Kim, Ruth W Kimokoti, Jonas Minet Kinge, Yoshihiro Kokubo, Soewarta Kosen, Gene F. Kwan, Taavi Lai, Mall Leinsalu, Yichong Li, Xiaofeng Liang, Shiwei Liu, Giancarlo Logroscino, Paulo A. Lotufo, Yuan Qiang Lu, Jixiang Ma, Nana Kwaku Mainoo, George A. Mensah, Tony R. Merriman, Ali H. Mokdad, Joanna Moschandreas, Mohsen Naghavi, Aliya Naheed, Devina Nand, K.M. Venkat Narayan, Erica Leigh Nelson, Marian L. Neuhouser, Muhammad Imran Nisar, Takayoshi Ohkubo, Samuel Oti, Andrea Pedroza, Dorairaj Prabhakaran, Nobhojit Roy, Uchechukwu K.A. Sampson, Hyeyoung Seo, Sadaf G. Sepanlou, Kenji Shibuya, Rahman Shiri, Ivy Shiue, Gitanjali M Singh, Jasvinder A. Singh, Vegard Skirbekk, Nicolas J. C. Stapelberg, Lela Sturua, Bryan L. Sykes, Martin Tobias, Bach Xuan Tran, Leonardo Trasande, Hideaki Toyoshima, Steven van de Vijver, Tommi Vasankari, J. Lennert Veerman, Gustavo Velasquez-Melendez, Vasiliy Victorovich Vlassov, Stein Emil Vollset, Stein Emil Vollset, Theo Vos, Claire L. Wang, Xiao Rong Wang, Elisabete Weiderpass, Andrea Werdecker, Jonathan L. Wright, Y Claire Yang, Hiroshi Yatsuya, Jihyun Yoon, Seok Jun Yoon, Yong Zhao, Maigeng Zhou, Shankuan Zhu, Alan D. Lopez, Christopher J L Murray, Emmanuela Gakidou 
Trending Questions (1)
Does the obesity-attributable cancer rate vary geographically?

Yes, the obesity-attributable cancer rate varies geographically. The burden of attributable cases was higher in countries with very high and high human development indices (HDIs) than in those with moderate and low HDIs.